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1.1 Positron Emission Tomography 

Positron emission tomography (PET) is a powerful molecular imaging technique with a 

broad range of applications including diagnosis of disease, monitoring of treatment and 

early phase determination of pharmacokinetics and pharmacodynamics of novel drug 

candidates.1-6 Via detection of the γ-radiation formed by annihilation of positrons (β+) 

emitted by radionuclides, such as carbon-11 (t1/2 = 20 min), nitrogen-13 (t1/2 = 10 min), 

oxygen-15 (t1/2 = 2 min), fluorine-18 (t1/2 = 110 min), gallium-68 (t1/2 = 68 min) and 

zirconium-89 (t1/2 = 78 hr), PET is able to provide well-defined, three-dimensional 

quantitative images of the distribution of biologically active compounds labelled with 

these radionuclides (Figure 1).2,7,8 

 

Figure 1 PET imaging before and after cancer treatment using PET tracer [18F]FDG.10 

The sensitivity of PET is superior to other molecular imaging techniques, since only 

picomolar concentrations of the labelled compounds have to be used. At these 

concentrations, biological targets of interest can be visualised without causing a 

biological effect by the radiolabelled compound, thus truly meeting the tracer principle 

of Hevesy.1 

The principal application of PET is to diagnose disease in patients by administering 

a PET tracer which visualises the biological pathway or the therapeutic target which is 

involved with the disease. Such clear visualisation techniques greatly facilitate 

physicians to establish the correct diagnosis and decide on an effective treatment 

strategy. The most popular PET tracer is 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG), 

which allows visualisation of glucose metabolism. Therefore [18F]FDG is widely used for 

the diagnosis of cancer and monitoring of cancerous lesions that often show increased 

glucose metabolism (Figure 1).9,10 

 

PET tracer, e.g. [18F]FDG

γ-radiation
detectors

Before cancer 
treatment

After cancer
treatment

[18F]FDG PET imaging
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Figure 2 PET imaging of β-amyloid plaques in the brain using [18F]Florbetapir.11 

A newly developed PET tracer is [18F]Florbetapir (Amyvid) (Figure 2).11 This tracer 

targets and thus visualises β-amyloid plaques, formed in Alzheimer’s disease. Therefore, 

PET imaging with [18F]Florbetapir is an excellent method for the diagnosis of this 

disease. 

Table 1 Selection of commonly used fluorine-18 labelled PET tracers. 

PET Tracer Target Application Ref. 

[18F]Florbetapir β-amyloid plaques Neurology - Alzheimer’s disease 11 

[18F]Flutemetamol β-amyloid plaques Neurology - Alzheimer’s disease 13 

[18F]Florbetaben β-amyloid plaques Neurology - Alzheimer’s disease 14 

[18F]F-DOPA Striatal Dopaminergic Pathway Neurology - Parkinson’s disease 15-17 

[18F]MPPF Serotonin 1A receptor Neurology - Various diseases 18-20 

[18F]DPA-714 Translocator protein 18 kDa Neurology - Various diseases 21 

[18F]FDG Glucose metabolism Oncology - Various cancers 9,10 

[18F]FLT Thymidine kinase 1 Oncology - Various cancers 22 

[18F]FET Amino acid transporters Oncology - Various cancers 23 

[18F]DCFPyL Prostate-specific membrane antigen Oncology - Prostate cancer 24 

[18F]FES Estrogen receptor Oncology - Breast cancer 25 

[18F]fluoride Bone hydroxyapatite crystals Oncology - Bone cancer 26 

[18F]FMISO Hypoxia Various - Tissue oxygen deficiency 27-28 

 

Healthy control Patient with Alzheimer’s disease

[18F]Florbetapir
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Besides the use of PET imaging in diagnosing disease in patients, PET is also a useful 

asset in the development of drugs. PET can be used to investigate the effect of the drug 

on a biological target or pathway by visualization with a PET tracer, probing the drug 

response downstream of the target, or by labelling the drug candidate itself and charting 

its distribution and kinetics.3,12 

In the human body, there is a wide range of biological targets available which 

potentially can be visualised and investigated by PET imaging. For some of these targets, 

PET tracers have been developed, of which a selection is shown in Table 1. For most 

targets, there is however not yet a PET tracer available. Therefore, to increase the 

potential of PET imaging, it is important that novel PET tracers are being developed.  

1.2 Synthesis of fluorine-18 labelled PET tracers 

Many positron emitting radionuclides are currently available for the production of PET 

tracers. Fluorine-18 is amongst the most frequently used due to the unique and ideal 

combination of a 110 minute half-life (allowing transport to satellite PET scan facilities), 

a clean decay profile (97% positron emission and 3% electron capture), and a low 

positron energy (max. 0.635 MeV). This results in relatively high-resolution PET images.7 

To enable radiochemists to label a wide range of compounds, the availability of a 

large toolkit of fluorine-18 labelling methods is important. Two major strategies can be 

identified to access fluorine-18 labelled tracers: (1) late-stage radiofluorination, 

introducing fluorine-18 in the last step of PET tracer synthesis by direct labelling of the 

precursor with [18F]fluoride and (2) the building block approach (also called modular 

build-up approach), where fast and efficient introduction of fluorine-18 into the building 

block by radiolabelling with [18F]fluoride occurs prior to one or more additional reaction 

steps to arrive at the actual PET tracer.  

The [18F]fluoride (18F-) itself is generally obtained by irradiation of oxygen-18 

enriched water (H218O) with a proton beam generated in a cyclotron.29,30 Using this 

production method, [18F]fluoride in H218O can be obtained in high amounts of up to 1 

TBq.31 

To be able to introduce [18F]fluoride into a molecule, it must be free from any 

residual water, including the H218O target water. The general method to recover the 

expensive H218O is by trapping [18F]fluoride on an anion exchange cartridge and 

collecting the H218O.30 The [18F]fluoride is subsequently eluted using a solution 

containing a base and a phase transfer catalyst, such as kryptofix-2.2.2 (K2.2.2) or tetra-n-

butylammonium hydrogencarbonate in water or a water/acetonitrile mixture. Residual 

water is removed by azeotropic drying at elevated temperatures. After the drying 

procedure, the [18F]fluoride can be dissolved using a phase transfer catalyst in a dry 
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organic non-protic solvent of choice, e.g. acetonitrile (MeCN), N,N-dimethylformamide 

(DMF) or dimethyl sulfoxide (DMSO).  

An example of a PET tracer which is made by direct late-stage radiofluorination is 

[18F]MPPF (Scheme 1).18 In this case, [18F]fluoride reacts with precursor 1 via an 

aromatic nucleophilic substitution, in which the -NO2 leaving group is substituted with 

[18F]fluoride.  

 

Scheme 1 Synthesis of [18F]MPPF via direct late-stage fluorination.18 

In the case of [18F]F-DOPA, late stage radiofluorination is not possible, due to the 

electron rich character of the aromatic ring. Therefore, to produce [18F]F-DOPA, the 

building block approach is currently the synthetic procedure of choice (Scheme 2).  

 

Scheme 2 Synthesis of [18F]F-DOPA via building block approach.32-34 

Precursor 3, which is required for this approach contains an electron withdrawing 

aldehyde group, which decreases the electron density of the aromatic ring and thereby 

enables nucleophilic aromatic substitution on the trimethyl ammonium leaving group. 

This conveniently results in fluorine-18 labelled building block 4. In two steps, this 

building block is then converted to benzyl iodide 6, which can undergo asymmetric C-C 

coupling towards [18F]F-DOPA.32-34 
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To develop novel radiofluorination methods the following aspects should be 

considered both for the late-stage and the building block approach methodology: 

• Radiochemical yields should be high enough to deliver the tracer in sufficient 

amounts for PET imaging of one or multiple patients. 

• Reaction conditions should ideally be mild, as this simplifies purification due to less 

degradation of the precursor and PET tracers. Furthermore, mild reactions are 

generally easier to automate and are more reliable. 

• Reaction times should be fast, to reduce loss of the fluorine-18 labelled PET tracer by 

radioactive decay. 

• The number of reaction steps should be kept at a minimum, as multiple steps make 

automation more difficult and increases the risks of failure due to the increased 

number of handlings. 

• The precursors should be bench stable, preferably for several years, to ensure 

successful synthesis of the PET tracer over time. 

• Purification should be as simple as possible, while still maintaining overall 

radiochemical purities of >95%. Simple methods like solid phase extraction are 

preferred as it is easy to automate and very fast (<5 minutes). Purification by High 

Pressure Liquid Chromatography (HPLC) is more challenging and requires more 

time (10 - 30 min), however is sometimes required to obtain sufficiently high 

purities. 

• Specific activity of the PET tracer should be high, at least >18 GBq/µmol, to allow 

PET imaging of low abundant targets.  

1.3 Synthesis of PET tracers containing the fluorine-18 labelled 

trifluoromethyl functional group 

Many biologically active compounds contain a trifluoromethyl (CF3) functional group. 

The CF3 group is incorporated to improve their binding selectivity, lipophilicity, or 

metabolic stability.35-38 The [18F]CF3-containing compounds and analogues are however 

not very abundant because only limited synthetic approaches were available before 

commencing the work described in this thesis (Scheme 3).39-48 

Both the nucleophilic substitution of X (chlorine or bromine) with [18F]fluoride on 

alkyl/aryl-CF2X precursors (Scheme 3a)39-44 and the nucleophilic addition of [18F]fluoride 

using 1,1-difluorovinyl precursors (Scheme 3b),45,46 generate the [18F]trifluoromethyl 

group in a single synthetic step. However, both approaches suffer usually from limited 

success. Although rather straightforward substrates gave the desired fluorine-18 

containing product in up to 93% yield, the labelling of more complex starting materials 
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resulted often in very low yields (<15%). Moreover, precursors containing the 

difluorobromomethyl or 1,1-difluorovinyl functional group are hard to obtain by com-

mercial sources or synthetic methods.  

 

Scheme 3 Methods available for the preparation of [18F]trifluoromethylated compounds using 

[18F]fluoride as fluorine-18 source, at the start of the development of the methods in this thesis. 

Furthermore, the specific activity (SA), which is the ratio of 18F product over the 

total amount of 18F + 19F product, is low (<1 GBq/µmol) for these methods. Specific 

activities of at least 18 GBq/µmol are however required to be able to visualise biological 

targets of interest without inducing any biological effect. Exception is the nucleophilic 

addition of [18F]fluoride on 1,1-difluorovinyl precursors, as this method yields radio-

fluorinated compounds in good specific activities up to 86 GBq/µmol (Scheme 3b). 

Unfortunately, this reaction only yields products with the less common [18F]2,2,2-

trifluoroethyl group, and cannot be used for the synthesis of [18F]trifluoromethyl 

arenes.45,46 

Lately, many efforts have been put in the development of novel methods towards 

the synthesis of [18F]CF3-containing PET tracers. The implication of these methods will 

be discussed in Chapter 5: Summary and Outlook. 

All in all, the number of methods available for radiochemists for the synthesis of 

radiolabelled compounds with the [18F]trifluoromethyl group is still limited. 

Furthermore, these methods show several limitations, including low radiochemical 

yields, difficult to obtain precursors and low specific activities. Therefore, there is a need 

for methods which supplement and improve the current available methods. 

1.4 Aim and outline of this thesis 

The aim of this thesis is to expand the toolbox of radiochemical methods with new 

methods for the synthesis of radiofluorinated PET tracers containing the fluorine-18 

labelled trifluoromethyl group, using [18F]trifluoromethane ([18F]HCF3) as a building 

block. 
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Chapter 2 gives an overview of the application of fluorine-18 labelled building 

blocks in the synthesis of PET tracers since 2010. In this review, both the synthesis and 

application of both the aliphatic and aromatic building blocks, including [18F]trifluoro-

methane, are covered.  

Chapter 3 describes the synthesis of [18F]trifluoromethane and the application of 

this building block in the synthesis of [18F]trifluoromethyl carbinols, by reaction with 

various aldehydes and ketones. Furthermore, the results in this chapter give new 

insights on the mechanism of the trifluoromethylation of aldehydes and ketones with 

trifluoromethane.  

Chapter 4 describes two novel methods towards the synthesis of [18F]trifluoro-

methyl arenes using [18F]trifluoromethane as a building block. In both methods, first 

[18F]trifluoromethane is converted using a Cu(I) source and a strong base towards 

[18F]CuCF3. In the first method, [18F]CuCF3 reacts with various aryl iodides under 

elevated temperatures while in the second method, [18F]CuCF3 reacts with various aryl 

boronic acids at room temperature in very short reaction times under oxidative 

conditions using air as an oxidant. Besides the development of these new methods, also 

the specific activity of [18F]trifluoromethane itself, and thus the PET tracers made with 

this building block, has been improved to allow PET imaging of low abundant targets (SA 

= 28 ± 5 GBq/µmol). The application of both methods for the synthesis of PET tracers is 

demonstrated by the synthesis of [18F](trifluoromethyl)estrone and [18F](trifluoro-

methyl)phenylanaline. 

Chapter 5 gives a summary of Chapter 1-4 and provides an outlook on the future 

for methods towards the synthesis of PET tracers with the fluorine-18 trifluoromethyl 

moiety, including the methods described in this thesis.  

1.5 References 

1 S. M. Ametamey, M. Honer and P. A. Schubiger, Chem. Rev., 2008, 108, 1501-1516. 

2 J. S. Fowler and A. P. Wolf, Acc. Chem. Res., 1997, 30, 181-188. 

3 P. M. Matthews, E. A. Rabiner, J. Passchier and R. N. Gunn, Br. J. Clin. Pharmacol., 
2012, 73, 175-186.  

4 H. Gewirtz, JACC Cardiovasc. Imaging, 2011, 4, 292-302. 

5 K.-L. Xiong, Q.-W. Yang, S.-G. Gong and W.-G. Zhang, Nucl. Med. Commun., 2010, 31, 4-
11. 

6 D. Papathanassiou, C. Bruna-Muraille, J.-C. Liehn, T. D. Nguyen and H. Curé, Crit. Rev. 
Oncol. Hematol., 2009, 72, 239-254. 

7 P. W. Miller, N. J. Long, R. Vilar and A. D. Gee, Angew. Chem. Int. Ed., 2008, 47, 8998-
9033. 



 
General introduction 

15 

8 M. E. Phelps, PNAS, 2000, 97, 9226-9233. 

9 P. F. Rambaldi, Whole-Body FDG PET Imaging in Oncology, Springer-Verlag, Mailand, 
1st edn., 2013. 

10 A. Ellmann and J. Holness, Contin. Med. Educ., 2013, 31, 279-283. 

11 C. M. Clark, J. A. Schneider, B. J. Bedell, T. G. Beach, W. B. Bilker, M. A. Mintun, M. J. 
Pontecorvo, F. Hefti, A. P. Carpenter, M. L. Flitter, M. J. Krautkamer, H. F. Kung, R. E. 
Coleman, P. M. Doraiswamy, A. S. Fleisher, M. N. Sabbagh, C. H. Sadowsky, E. M. 
Reiman, S. P. Zehntner and D. M. Skovronsky, JAMA, 2011, 305, 275–283. 

12 P. H. Elsinga, A. van Waarde, A. M. J. Paans and R. A. J. O. Dierckx, Trends on the Role of 
PET in Drug Development, World Scientific, Singapore, 1st edn., 2012. 

13 R. Vandenberghe, K. Van Laere, A. Ivanoiu, E. Salmon, C. Bastin, E. Triau, S. 
Hasselbach, I. Law, A. Andersen, A. Korner, L. Minthon, G. Garraux, N. Nelissen, G. 
Bormans, C. Buckley, R. Owenius, L. Thurfjell, G. Farrar and D. J. Brooks, Ann. Neurol., 
2010, 68, 319-329. 

14 H. Barthel, H. Gertz, S. Dresel, O. Peters, P. Bartenstein, K. Buerger, F. Hiemeyer, S. M. 
Wittemer-Rump, J. Seibyl, C. Reininger and O. Sabri, Lancet Neurol., 2011, 10, 424-
435. 

15 W. D. Heiss, K. Wienhard, R. Wagner, H. Lanfermann, A. Thiel, K. Herholz and U. 
Pietrzyk, J. Nucl. Med., 1996, 37, 1180-1182. 

16 A. Becherer, G. Karanikas, M. Szabó, G. Zettinig, S. Asenbaum, C. Marosi, C. Henk, P. 
Wunderbaldinger, T. Czech, W. Wadsak and K. Kletter, Eur. J. Nucl. Med. Mol. Imaging, 
2003, 30, 1561-1567. 

17 W. Chen, D. H. S. Silverman, S. Delaloye, J. Czernin, N. Kamdar, W. Pope, N. 
Satyamurthy, C. Schiepers and T. Cloughesy, J. Nucl. Med., 2006, 47, 904-911. 

18 D. Le Bars, C. Lemaire, N. Ginovart, A. Plenevaux, J. Aerts, C. Brihaye, W. Hassoun, V. 
Leviel, P. Mekhsian, D. Weissmann, J. F. Pujol, A. Luxen and D. Comar, Nucl. Med. Biol., 
1998, 25, 343-350. 

19 C. Y. Shiue, G. G. Shiue, P. D. Mozley, M. P. Kung, Z. P. Zhuang, H. J. Kim and H. F. Kung, 
Synapse, 1997, 25, 147–154. 

20 L. Lang, E. Jagoda, B. Schmall, B. Vuong, H. R. Adams, D. L. Nelson, R. E. Carson and W. 
C. Eckelman, J. Med. Chem., 1999, 42, 1576–1586. 

21 N. Arlicot, J. Vercouillie, M. Ribeiro, C. Tauber, Y. Venel, J. Baulieu, S. Maia, P. Corcia, 
M. G. Stabin, A. Reynolds, M. Kassiou and D. Guilloteau, Nucl. Med. Biol., 2012, 39, 
570-578. 

22 H. Barthel, M. C. Cleij, D. R. Collingridge, O. C. Hutchinson, S. Osman, Q. He, S. K. 
Luthra, F. Brady, P. M. Price and E. O. Aboagye, Canc. Res., 2003, 63, 3791-3798. 

23 W. A. Weber, H. J. Wester, L. Grosu Anca, M. Herz, B. Dzewas, H. J. Feldmann, M. Molls, 
G. Stöcklin and M.  Schwaiger, Eur. J. Nucl. Med., 2000, 27, 542-549. 

24 Z. Szabo, E. Mena, S. P. Rowe, D. Plyku, R. Nidal, M. A. Eisenberger, E. S. Antonarakis, 
H. Fan, R. F. Dannals, Y. Chen, R. C. Mease, M. Vranesic, A. Bhatnagar, G. Sgouros, S. Y. 
Cho and M. G. Pomper, Mol. Imaging. Biol., 2015, 17, 565-574. 



 
Chapter 1 

16 

25 S. D. Johnson, M. J. Welch, Q. J. Nucl. Med., 1998, 42, 8-17. 

26 D. C. Bortot, B. J. Amorim, G. C. Oki, S. B. Gapski, A. O. Santos, M. C. L. Lima, E. C. S. C. 
Etchebehere, M. F. Barboza, J. Mengatti and C. D. Ramos, Eur. J. Nucl. Med. Mol. 
Imaging, 2012, 39, 1370-1736. 

27 P. E. Valk, C. A. Mathis, M. D. Prados, J. C. Gilbert and T. F. Budinger, J. Nucl. Med., 
1992, 33, 2133-2137. 

28 S. T. Lee and A. M. Scott, Sem. Nucl. Med., 2007, 37, 451-461. 

29 M. Guillaume, A. Luxen, B. Nebeling, M. Argentini, J. C. Clark and V. W. Pike, Appl. 
Radiat. Isot., 1991, 42, 749–762. 

30 T. J. Ruth and A. P. Wolf, Radiochim. Acta, 1979, 26, 21-24. 

31 L. Cai, S. Lu, V. W. Pike, Eur. J. Org. Chem. 2008, 2853-2873. 

32 C. Lemaire, M. Guillaume, R. Cantineau, A. Plenevaux and L. Christiaens, Appl. Radiat. 
Isot., 1991, 42, 629-635. 

33 L. C. Libert, X. Franci, A. R. Plenevaux, T. Ooi, K. Maruoka, A. J. Luxen and C. F. 
Lemaire, J. Nucl. Med., 2013, 54, 1154-1161. 

34 C. Lemaire, L. Libert, X. Franci, J.-L. Genon, S. Kuci, F. Giacomelli and A. Luxen, J. 
Labelled Comp. Radiopharm., 2015, 58, 281-290. 

35 H. L. Yale, J. Med. Pharmaceut. Ch., 1959, 1, 121-133. 

36 S. Purser, P. R. Moore, S. Swallow and V. Gouverneur, Chem. Soc. Rev., 2008, 37, 237-
432. 

37 J. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. 
A. Soloshonk and H. Liu, Chem. Rev., 2014, 114, 2432-2506. 

38 W. K. Hagmann, J. Med. Chem., 2008, 51, 4359-4369. 

39 G. Angelini, M. Speranza, C.-Y. Shiue and A. P. Wolf, J. Chem. Soc. Chem. Commun. 
1986, 924-925. 

40 M. R. Kilbourn, M. R. Pavia and V. E. Gregor, Appl. Radiat. Isot., 1990, 41, 823-828. 

41 M. K. Das and J. Mukherjee, Appl. Radiat. Isot., 1993, 44, 835-842. 

42 P. Johnström and S. Stone-Elander, J. Labelled Compd. Rad., 1995, 39, 537-548. 

43 J. Prabhakaran, M. D. Underwood, R. V. Parsey, V. Arango, V. J. Majo, N. R. Simpson, R. 
van Heertum, J. J. Mann and J. S. D. Kumar, Bioorg. Med. Chem., 2007, 15, 1802-1807. 

44 M. Suehiro, G. Yang, G. Torchon, E. Ackerstaff, J. Humm, J. Koutcher and O. Ouerfelli, 
Bioorg. Med. Chem., 2011, 19, 2287-2297. 

45 P. J. Riss and F. I. Aigbirhio, Chem. Commun., 2011, 47, 11873-11875. 

46 P. J. Riss, V. Ferrari, L. Brichard, P. Burke, R. Smith and F. I. Aigbirhio, Org. Biomol. 
Chem., 2012, 10, 6980-6986. 



 

 

 

2 

Fluorine-18 labelled building blocks for PET tracer 

synthesis 

Dion van der Born, Anna Pees, Alex J. Poot, Romano V. A. Orru,  

Albert D. Windhorst, Danielle J. Vugts 

 

 

 

 

 

 

 

 

 

 

 

Positron emission tomography (PET) is an important driver for present day healthcare. 

Fluorine-18 is the most widely used radioisotope for PET imaging and a thorough overview 

of the available radiochemistry methodology is a prerequisite for selection of a synthetic 

approach for new fluorine-18 labelled PET tracers. These PET tracers can be synthesised 

either by late-stage radiofluorination, introducing fluorine-18 in the last step of the 

synthesis, or by a building block approach (also called modular build-up approach), 

introducing fluorine-18 in a fast and efficient manner in a building block, which is reacted 

further in one or multiple reaction steps to form the PET tracer. This review presents a 

comprehensive overview of the synthesis and application of fluorine-18 labelled building 

blocks since 2010. 

 

Published in: Chemical Society Reviews, 2017, 46, 4709-4773
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2.1 Introduction 

In recent years, new and very promising methodologies for late-stage aromatic 

radiofluorination reactions have been developed and excellently reviewed by Preshlock 

et al.1 and Brooks et al.2 The overview of the different late-stage aromatic radio-

fluorination reactions given in Table 1, nicely demonstrates the progress in this area.1–24 

For several reasons however, we believe that application of fluorine-18 labelled building 

blocks for radiolabelling of biologically active molecules as an alternative for late-stage 

fluorination, is still of high value. In the first place the building block approach allows a 

modular build-up of fluorine-18 labelled PET tracers which cannot be made by direct 

late-stage radiofluorination methods. Second, using a labelling strategy that employs 

fluorine-18 labelled building blocks, the desired PET tracers can be obtained in higher 

radiochemical yields and radiochemical purity compared to application of late-stage 

radiofluorination techniques. Finally, once a building block is developed, the same 

generic labelling methodology can easily be applied to other compounds, e.g. N-

succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) for peptides or a library of analogues of a 

lead compound. This in contrast to late-stage radiofluorination techniques that only 

allow the synthesis of a dedicated precursor and where labelling conditions always need 

to be optimised for every new compound. 

The aim of this review is to summarise the recent developments in fluorine-18 

labelled building blocks containing a carbon–fluorine bond and their applications in PET 

tracer synthesis. A comprehensive overview of publications since 2010 that describe the 

synthesis and development of fluorine-18 labelled building blocks and their potential 

application to radiolabel low molecular weight compounds for PET tracers, is provided.   
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Table 1 Late-stage direct aromatic radiofluorination using [18F]fluoride. 

Method & highlights Ref. 

01 Radiofluorination of (hetero)aryl iodonium salts 

 

2, 3, 23 
and 24 

• Low to moderate radiochemical yields 
on electron-rich and electron-neutral 
precursors. 

• Reasonable selectivity towards the less 
electron rich arene. 

• Precursors can be challenging to 
prepare. 

• Precursors have modest shelf lives. 

• Harsh reaction conditions, 
temperatures of >150 °C. 

• Limited tolerance to common 
functional groups. 

 

02 Radiofluorination of (hetero)aryl iodonium ylides 

 

2, 4 and 5 

• Low to good radiochemical yields on 
electron rich and electron-deficient 
precursors. 

• Precursors are stable crystalline 
materials. 

• Method has been successfully applied 
to highly functionalised molecules and 
existing PET radiopharmaceuticals. 

 

03 Radiofluorination of (diacetoxyiodo)arenes 

 

6 

• Low to moderate radiochemical 
conversions on electron-neutral to 
electron-deficient precursors. 

• Limited scope concerning arene 
electron density. 

• Synthesis of precursors can be 
challenging. 

• Method has not yet been tested on 
highly functionalised molecules. 
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Table 1 (Continued) 

Method & highlights Ref. 

04 Cu-mediated radiofluorination of (mesityl)(aryl) iodonium salts 

 

1, 2, 7 and 
8 

• Low to good radiochemical yields on 
electron-rich and electron-deficient 
precursors. 

• High reproducibility of radiochemical 
yields. 

• Relatively mild reaction conditions. 

• No reduced specific activity due to 
isotopic exchange on BF4 anion. 

• Precursors can be challenging to 
prepare. 

• Copper catalyst is air stable and 
commercially available. 

 

05 Radiofluorination of triarylsulfonium salts 

 

1, 9 and  

10 

• Low to good radiochemical yields on 
electron-neutral and electron-deficient 
precursors. 

• Precursors can be challenging to 
prepare. 

• Precursors show high thermal and 
chemical stability. 

• 18F-Fluorination proceeds in presence 
of basic functional groups and 
heterocyclic moieties. 

 

06 Radiofluorination of diaryl sulfoxides 

 

1 and 11 

• Moderate to excellent radiochemical 
yields on electron-deficient precursors. 

• No or very low radiochemical yield on 
electron-rich or electron-neutral 
precursors. 

• Precursors can be challenging to 
prepare. 

• Good regioselectivity towards more 
electron-deficient arenes. 

• No results yet available on the reaction 
with complex substrates. 
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Table 1 (Continued) 

Method & highlights Ref. 

07 Pd-Catalysed radiofluorination of Pd-precursors 

 

 

• Low to moderate radiochemical yields 
on electron-rich precursors. 

• Two-step procedure, synthesis of [Pd]–
18F complex and subsequent 
radiofluorination of a [Pd]-arene. 

• [Pd]–18F complex is sensitive to air and 
moisture. 

2, 12-14 

08 Radiofluorination of arylnickel complexes 

 

 

• Low to moderate radiochemical yields 
on a wide scope of precursors. 

• Room temperature reaction and short 
reaction times (<1 min). 

• The volume of aqueous [18F]fluoride 
must be kept <1% to prevent 
degradation of Ni-precursor. 

• Basicity of the [18F]fluoride must be 
reduced/tuned, when [18F]fluoride is 
dried by classic azeotropic distillation. 

• Synthesis of Ni-precursors may be 
challenging. 

2, 15 and 
16 

09 Copper mediated radiofluorination of (hetero)aryl boronic acid pinacolesters 

 

2 and 17 

• Low to good radiochemical yields on 
electron-rich and electron deficient 
precursors. 

• Precursors are stable, however 
challenging to synthesise. 

• Reasonable functional group tolerance. 

• Challenging to reproduce. 

• Products are difficult to purify due to 
the presence of aryl-H, formed from 
aryl-BPin during the reaction. 

• Copper catalyst is air stable and 
commercially available, but sensitive 
for basic conditions. 
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Table 1 (Continued) 

Method & highlights Ref. 

10 Copper mediated radiofluorination of aryl boronic acids 

 

1 and 18 

• Low to good radiochemical yields on 
electron-rich and electron deficient 
precursors. 

• Precursors are stable, however 
challenging to prepare. 

• Reasonable functional group tolerance. 

• Not yet tested on heteroaryl 
precursors. 

• Not extensively tested yet on more 
complex precursor structures. 

 

11 Copper mediated radiofluorination of arylstannanes 

 

19 

• Low to good radiochemical conversions 
on electron deficient arenes. 

• Precursors are stable, however may be 
challenging to prepare. 

• Method has been successfully applied 
to highly functionalised molecules and 
existing PET radiopharmaceuticals. 

 

12 Oxidative radiofluorination of phenols 

 

2 and 20 

• Low to moderate radiochemical yields 
on electron-rich and electron-deficient 
precursors. 

• Reasonable functional group tolerance. 

• Not yet evaluated on structural more 
complex precursors. 

• Not yet evaluated on heteroarenes. 
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Table 1 (Continued) 

Method & highlights Ref. 

13 Deoxyradiofluorination of phenols 

 

21 

• Moderate to excellent radiochemical 
yields on electron-neutral and electron-
deficient precursors. 

• Phenolic precursors are relatively easy 
to synthesise and stabile. 

• Excellent functional group tolerance. 

• Radiochemical conversions are based 
on eluted [18F]fluoride, which is 62% of 
the total fluoride activity. 

 

14 TiO2 mediated radiofluorination of tosylated precursors 

 

 

• Good yields on electron-neutral and 
electron-deficient precursors. 

• Precursors are simple to synthesise 
from phenolic precursors. 

• No azeotropic drying of [18F]fluoride 
required, may be performed in up to 
25% v/v water. 

• Method has been successfully applied 
to existing PET radiopharmaceuticals. 

• Scaling up the amount of aqueous 
[18F]fluoride had limited success. 

1 and 22 

Yields: low = 0–30%; moderate = 0–70%; good = 70–90%; excellent = 90–100%. 
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2.2 Fluorine-18 labelled aliphatic building blocks 

A broad spectrum of aliphatic fluorine-18 labelled building blocks has been utilised in 

PET tracer synthesis. The spectrum ranges from simple molecules such as radio-

fluorinated methyl and ethyl halides and sulfonates to complex structures such as 

[18F]FDG. Fluorine-18 labelled aliphatic building blocks have been used to synthesise 

either the radiolabelled lead structure or a structural derivative of the lead structure. In 

the following sections, the synthesis and application of aliphatic fluorine-18 labelled 

building blocks applied since 2010 will be discussed with respect to their ease of 

synthesis, stability and application in follow-up reactions. 

2.2.1 [18F]Fluoromethyl halides and sulfonates 

The replacement of a methyl group by a [18F]fluoromethyl group is a relatively minor 

modification in the structure of most small molecules and the chance of significantly 

influencing the physicochemical and biological properties is minimal. Therefore, 

[18F]fluoromethylation is often considered as labelling approach for molecules that 

contain no native fluorine, or where labelling in another position is less preferred. 

However, the [18F]fluoromethyl group is prone to metabolic instability, resulting in bone 

uptake of released free [18F]fluoride.25 The metabolic stability can however be enhanced 

by deuteration of the [18F]fluoromethyl group26 or by inhibiting enzyme reactivity with a 

pharmacological intervention employing disulfiram or miconazole.27,28 

Multiple [18F]fluoromethylation agents are described and available: [18F]fluoro-

methyl bromide and iodide are most established, while more recently, [18F]fluoromethyl 

tosylate as a reagent is of increased interest. This is especially due to the ease of handling 

and purification of [18F]fluoromethyl tosylate compared to its volatile bromine and 

iodine analogues. [18F]Fluoromethyl triflate can also be used for [18F]fluoromethylation, 

but it needs to be synthesised in a two-step procedure from dibromomethane, and is 

therefore less preferred over other reagents.29 

Hereafter, synthesis and application of every [18F]fluoromethylation agent for PET 

tracer synthesis reported since 2010 will be discussed. 

2.2.1.1 [18F]Fluoromethyl bromide 

[18F]Fluoromethyl bromide 2 was until the early 2000s the most established agent for 

[18F]fluoromethylation. Although the interest in this building block has decreased since 

Neal and co-workers developed the synthesis and optimised the production of the tosyl 

analogue, [18F]fluoromethyl tosylate, for [18F]fluoromethylation, [18F]fluoromethyl 

bromide is still applied in various reactions for PET tracer production. 
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[18F]Fluoromethyl bromide is synthesised in one step by reacting dibromomethane 

1 with [18F]fluoride in MeCN at 90–100 °C (Scheme 1). 

 

Scheme 1 Synthesis of [18F]fluorobromomethane. 

The main challenge is in the purification of the volatile product. Although 

[18F]fluoromethyl bromide has a much lower boiling point (b.p. 9 °C) than its precursor 

(b.p. 97 °C) and the solvent MeCN (b.p. 82 °C), no pure product could be obtained by 

straightforward distillation.30 Purification using gas chromatography is an alternative, 

however it is incompatible with automation.29 Distillation over 3 to 4 silica plus Sep-Pak 

cartridges however provides pure [18F]fluoromethyl bromide in an automation-

compliant manner, as impurities are retained on the cartridges while most of the product 

passes through.30,31 Reported radiochemical yields of [18F]fluoromethyl bromide vary 

strongly, from 37 to 74% (dc), which is a major drawback for widespread application of 

this radiolabelled building block.29,32 

 

Scheme 2 N-Alkylation and O-alkylation reactions with [18F]fluoromethyl bromide. 

The subsequent reactions that can be performed with [18F]fluoromethyl bromide to 

obtain a PET tracer can be divided into two categories; O-alkylation and N-alkylation 

(Scheme 2). Although O-alkylation comprises the reaction with aliphatic as well as 

aromatic hydroxyl groups, since 2010 only aromatic O-alkylations with [18F]fluoro-

methyl bromide have been described. An overview of all labelled structures is given in 

Scheme 3.  

All syntheses were conducted under comparable reaction conditions. Mostly, 

reactions were performed in MeCN, only Lodge and co-workers described the use of N,N-

dimethylformamide (DMF).33 The reactions required high reaction temperatures (90–

100 °C) and the addition of an inorganic base. The choice of base proved to have an 

impact on the yield as reported by Klein et al. Purification of the final 18F-

fluoromethylated PET tracers was carried out by semi-preparative HPLC.31–34 
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Scheme 3 Recently produced tracers using O-alkylation with [18F]fluoromethyl bromide.31–34 

There is only one example of the application of [18F]fluoromethyl bromide in N-

alkylation reported since 2010, namely, the synthesis of [18F]fluorocholine 8. This is an 

established oncologic PET tracer for imaging prostate cancer (Scheme 4). 

This tracer is routinely synthesised at numerous laboratories and in some cases 

even commercially available. An automated synthesis of [18F]fluorocholine has been 

developed by Shao and co-workers. Synthesis and purification of the alkylating reagent 

was carried out as described above, by distilling [18F]fluoromethyl bromide over three 

silica Sep-Pak cartridges. This approach proved to be the most efficient regarding yield 

as well as radiochemical and chemical purity. The volatile product was trapped on a C18 

cartridge, where it reacted with the [18F]fluorocholine precursor, dimethylaminoethanol. 

The tracer was obtained after a cartridge purification procedure with a radiochemical 

yield of 4–6% (dc).30 
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Scheme 4 Synthesis of [18F]fluorocholine and deuterated derivatives with [18F]fluoromethyl bromide. 

Smith and co-workers investigated the influence of different [18F]fluoromethylation 

agents in the [18F]fluorocholine synthesis. Next to [18F]fluoromethyl bromide, less 

volatile [18F]fluoromethyl tosylate was used for [18F]fluoromethylation, to simplify 

handling and purification. However, for both synthesis routes, a synthesis time of about 

150 minutes and similar yields have been observed, both for deuterated 8b as well as 

non-deuterated [18F]fluorocholine 8a.29 

Thus, [18F]fluoromethyl bromide 2 is a useful building block for [18F]fluoro-

methylation, providing comparable yields to its more popular and easy-to-handle 

analogue [18F]fluoromethyl tosylate. Purification and handling of the gaseous compound 

have been mastered and translated to automated production, making [18F]fluoromethyl 

bromide 2 easily accessible for novel PET tracer development. 

2.2.1.2 [18F]Fluoromethyl iodide 

Although the more reactive [18F]fluoromethyl iodide can be employed analogously to 

[18F]fluoromethyl bromide or tosylate for [18F]fluoroalkylation, its synthesis and use has 

only been reported once since 2010. Hortala and co-workers developed the synthesis of 

a deuterated variant of a [18F]fluoromethylated CB2 cannabinoid receptor ligand, making 

use of [18F]-d2-fluoromethyl iodide. 

Deuterated [18F]fluoromethyl iodide 10 was obtained via a nucleophilic substitution 

reaction of diiodomethane-d2 9 with [18F]fluoride in the presence of potassium 

carbonate and kryptofix K2.2.2 (Scheme 5). Separation of the volatile building block (b.p. 

54–56 °C)35 from the precursor (b.p. 181 °C)36 was achieved by distillation in a stream of 

helium. Unfortunately the radiochemical yield of [18F]fluoromethyl iodide was not 

reported, which makes the comparison between the production of this reagent with 

other [18F]fluoromethyl alkylating agents difficult. 

 

Scheme 5 Synthesis of [18F]fluoromethyl iodide.35 
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For [18F]fluoroalkylation, the distilled [18F]FCD2I 10 was reacted with the radio-

labelling precursor in DMF in the presence of cesium carbonate for 5 minutes at 90 °C 

(Scheme 6). Purification by semi-preparative HPLC resulted in only 0.3–1.6% (overall) 

product, which was attributed to the complexity of the [18F]fluoromethylation reagent 

synthesis. 

It remains unclear why this [18F]fluoroalkylation agent was chosen, the choice 

possibly depended on the availability of the deuterated precursor. This building block 

has the same disadvantages as the corresponding bromide, being gaseous and difficult to 

separate from its precursor. Unfortunately, there is not enough data available to draw a 

conclusion whether this building block can be synthesised in similar yields as its 

analogues and whether it shows comparable reactivity in [18F]fluoroalkylation 

reactions.25 

 

Scheme 6 [18F]Fluoroalkylation of a CB2 cannabinoid receptor ligand.46 

2.2.1.3 [18F]Fluoromethyl tosylate 

Although first published in 1987 by Block and Coenen, the synthesis of [18F]fluoromethyl 

tosylate 14 did not draw much attention and was initially only applied occasionally. This 

changed when Neal and co-workers reported an improved synthesis of [18F]fluoromethyl 

tosylate in 2005, after which application of [18F]fluoromethyl bromide and iodide 

decreased considerably in favour of using [18F]fluoromethyl tosylate as [18F]fluoro-

methylating agent. The increasing preference for [18F]fluoromethyl tosylate is easy to 

understand as handling and purification are straightforward in comparison to its volatile 

analogues.37 

[18F]Fluoromethyl tosylate 14 is synthesised in a one-step reaction from methylene 

ditosylate 13 in MeCN at temperatures between 80 and 120 °C (Scheme 7). 

Unfortunately, in addition to the desired [18F]fluoromethyl tosylate, [18F]tosylfluoride is 

formed as side product.29 Many efforts have been undertaken to reduce the amount of 

this side product and thus increase the yield of [18F]fluoromethyl tosylate. Neal and co-
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workers were first to recognise that traces of water have a positive influence on the 

reaction and reduce side product formation.37 Up to 20% of water can be beneficial to 

the reaction outcome.38 

 

Scheme 7 Synthesis of [18F]fluoromethyl tosylate. 

Another approach, pursued by Beyerlein et al., is to replace water by the protic 

solvent tert-butanol. The optimal yield of 14 using this approach was achieved in a 

solvent mixture of 75% MeCN and 25% tert-butanol. Furthermore, it was shown that 

with the commonly used combination of potassium carbonate and kryptofix K2.2.2, 

degradation of the precursor occurred. Tetrabutylammonium bicarbonate and the 

combination of potassium carbonate and 18-crown-6 proved better alternatives.26,29 

In contrast to the volatile analogues [18F]fluoromethyl bromide and iodide, 

purification of [18F]fluoromethyl tosylate can be easily carried out by semi-preparative 

HPLC, and even successful [18F]fluoromethylations without intermediate purification 

have been described.39,40 Automated procedures have been developed using con-

ventional synthesis units as well as microfluidic devices. Both provide the radiolabelled 

building block in a radiochemical yield of 44% (dc).26,38 

[18F]Fluoromethyl tosylate can be used for a variety of alkylation reactions, next to 

the common N- and O-alkylation reactions, even S- and P-alkylations have been reported 

with this reagent (Scheme 8).  

 

Scheme 8 Reactions with [18F]fluoromethyl tosylate. 
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O-Alkylations of phenolic hydroxyl groups form besides N-alkylations the major 

part of the conducted [18F]fluoromethylations with deuterated [18F]fluoromethyl 

tosylate. Scheme 9 shows the reported tracers obtained via [18F]fluoromethyl tosylate. O-

Alkylations were all conducted under similar reaction conditions, proving that the 

reaction is generally applicable without the need to intensively adjust the different 

reaction parameters. Dimethyl sulfoxide (DMSO) served as solvent and the reactions 

were carried out at 110–120 °C for 10–20 minutes. Sodium hydroxide and cesium 

carbonate have been used as base in the nucleophilic substitution reactions. Radio-

chemical yields are comparable and range from 60 to 80% for the final alkylation 

step.26,41,42 

 

Scheme 9 O-Alkylated tracers with [18F]fluoromethyl tosylate.26,41,42 

Analogous to the O-alkylation, aromatic S-alkylation of guanidine derivative 18 has 

been performed (Scheme 10).  

 

Scheme 10 Synthesis of a S-fluoroalkyl guanidine derivative.43 
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The reaction was carried out in MeCN at 110 °C for 15 minutes using cesium 

carbonate as base. After purification by semi-preparative HPLC, the compound however 

decomposed to give free [18F]fluoride. Hence, no yield has been determined for the 

synthesis of tracer 19.43 

Similar to [18F]fluoromethyl bromide, the main application of [18F]fluoromethyl 

tosylate in N-alkylation reactions is the production of the PET tracer [18F]fluorocholine 

for the imaging of prostate cancer (Scheme 11).  

 

Scheme 11 Synthesis of [18F]fluorocholine and deuterated derivatives with [18F]fluoromethyl 

tosylate.29,38,39 

Extensive studies have been performed to establish optimal labelling conditions and 

to develop an automated synthesis procedure. Smith and co-workers were the first to 

report [18F]fluoromethylation of the choline precursor using [18F]fluoromethyl tosylate. 

They compared [18F]fluorocholine and its d2 and d4 derivatives (Scheme 11) and showed 

enhanced stability of the deuterated species towards in vivo oxidation during 

metabolism. They reported that temperature had a strong influence on N- or O-

alkylation. At 100 °C, desired N-alkylation was favoured whereas higher temperatures 

directed the reaction towards O-alkylation. Compared to MeCN, the use of DMF resulted 

in higher radiochemical yields (70 ± 5% dc, n = 5, alkylating step) that could be achieved 

in decreased reaction times. This was especially beneficial for the deuterated analogues, 

which required a longer reaction time compared to the non-deuterated compound. The 

optimised procedure gave the tracers in an overall radiochemical yield of about 10% 

(ndc) for the d4 and the non-deuterated compound and 8% (ndc) for [18F]d2-

fluorocholine with a total synthesis time of 150 minutes.29 

Almost simultaneously, Pascali et al. developed a microfluidic synthesis procedure 

for dose-on-demand [18F]fluorocholine production. They produced [18F]fluorocholine in 

13–15 minutes with a radiochemical yield of 20 ± 2% (ndc, overall) without intermediate 

purification of [18F]fluoromethyl tosylate.38 

Further proof that intermediate purification is not required for successful 

[18F]fluorocholine production is provided by the fully-automated one-pot synthesis 

developed by Rodnick and co-workers. To the mixture of crude [18F]fluoromethyl 
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tosylate, dimethylamino ethanol was added and heated for 10 minutes at 120 °C to yield 

7% (ndc, overall) in a total synthesis time of 75 minutes. 

Not only [18F]fluorocholine but also other tracers obtained by N-alkylation have 

been reported using [18F]fluoromethyl tosylate. As can be seen in Schemes 12 and 13, 

next to tertiary nitrogen atoms also primary and secondary nitrogen atoms can be 

alkylated. This is rarely found in literature because reactivity of the nitrogen increases in 

each step leading to polyalkylation. However, the huge excess of precursor compared to 

alkylation agent (in this case [18F]fluoromethyl tosylate) used in radiochemistry allows 

in this case selective monoalkylation. 

 

Scheme 12 N-Alkylation reactions of primary amines.44 

An example of [18F]fluoroalkylation of primary amines is the synthesis of the 

glucosamine derivative 23 (Scheme 12). Using the conditions of Smith and co-workers, 

[18F]fluoromethyl glucosamine derivative 23 could be obtained in a radiochemical yield 

of 8 ± 2% (n = 15, ndc).44 

 

Scheme 13 N-Alkylation reactions of secondary amines.26,45 
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Two successful [18F]fluoromethylations of secondary amines with [18F]tosylate 

(Scheme 13) are (1) the synthesis of [18F]fluoro-d2-methylflumazenil 25 for imaging 

benzodiazepine receptors and (2) the synthesis of the progesterone receptor agonist 27. 

Very different reaction conditions were applied in each reaction. While Beyerlein et al. 

reported the [18F]fluoro-d2-methyl-flumazenil 25 radiosynthesis with a radiochemical 

yield of 60% dc over the last step using sodium hydride at 80 °C in DMSO,26 Merchant et 

al. reported the synthesis of 27 in DMF at 150 °C in presence of potassium carbonate as 

base. Lower temperatures led in the latter case to yields lower than 1% and the addition 

of base was necessary for a clean reaction. Thus, 27 was synthesised from [18F]fluoro-

methyl tosylate in 30 minutes with a radiochemical yield of 15 ± 4% (ndc).45 

Since 2010 only one case of P-alkylation with [18F]fluoromethyl tosylate has been 

reported. [18F]Fluoromethyl triphenylphosphonium cation 29 was synthesised in a one-

pot reaction from [18F]fluoromethyl tosylate 14 and triphenylphosphine 28 with an 

overall radiochemical yield of 30–34% dc (Scheme 14).40 

 

Scheme 14 Synthesis of [18F]fluoromethyl triphenylphosphonium cation.40 

In conclusion, [18F]fluoromethyl tosylate is a building block, which can be applied in 

many different alkylation reactions. Due to its ease of handling and purification 

compared to the volatile analogues [18F]fluoromethyl bromide and [18F]fluoromethyl 

iodide, it has gained increased interest for PET tracer development and routine 

production. 

2.2.2 [18F]Fluoroethyl halides and sulfonates 

Like the [18F]fluoromethyl halides and sulfonates, [18F]fluoroethyl halides and sulfonates 

find widespread application in fluorine-18 labelling. Especially for molecules which 

contain no native fluorine atom or where the fluorine atom is difficult to introduce. 

[18F]Fluoroethylation often allows for the radiofluorination of easier accessible 

precursors under milder reaction conditions and can therefore be advantageous over 

direct labelling. Furthermore, it facilitates separation of the labelled compound from the 

precursor by HPLC purification.46 
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[18F]Fluoroethyl groups are often used as a substitute for a methyl group and in 

contrast to [18F]fluoromethylated tracers they offer the advantage of showing high in 

vivo stability. Next to the most popular [18F]fluoroethylation agent [18F]fluoroethyl 

tosylate ([18F]FETos), the bromide and different sulfonates have found application in 

PET tracer synthesis. The different building blocks and their advantages will be 

discussed in the following sections. 

2.2.2.1 [18F]Fluoroethyl bromide 

[18F]Fluoroethyl bromide 31 is after [18F]FETos the most frequently used [18F]fluoro-

ethyl building block and has been employed in many PET tracer syntheses. All syntheses 

of this building block followed established procedures by Zhang et al. (Scheme 15).47,48 

Typically, 2-bromoethyl triflate served as precursor, but also the use of the correspond-

ing tosylate or nosylate has been reported.49,50 The radiofluorination reaction was 

carried out in o-dichlorobenzene as solvent, reaction temperatures varied between 85–

135 °C and reaction times between 2–15 minutes. [18F]Fluoroethyl bromide 31 was 

distilled during or after the reaction and transferred to a second reaction vial where it 

was trapped in a solution at around -15 °C, containing the precursor and base for the 

subsequent reaction. Distillation was straightforward and the product was produced in 

high (radio)chemical purity due to the much lower boiling point of [18F]fluoroethyl 

bromide (71.5 °C) compared to o-dichlorobenzene (179 °C) and the triflate precursor 

(230 °C). Decay-corrected radiochemical yields of 53–71% have been reported.49,51 

Schmaljohann and co-workers reported a cartridge-based purification procedure instead 

of distillation. They obtained the building block in a radiochemical yield of 63% (dc).52 

 

Scheme 15 Synthesis of the building block [18F]fluoroethyl bromide. 

Labelling reactions with [18F]fluoroethyl bromide can be divided into two main 

categories, being N- and O-alkylation (Scheme 16). Whereas N-alkylation of various 

amines is performed, O-alkylation is almost exclusively applied and reported for 

phenolic precursors. Apart from phenolic O-alkylation, two ester formations with 

carboxyl groups have been reported. 
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Scheme 16 Reaction scope of [18F]fluoroethyl bromide as building block. 

An overview of tracers obtained by N-alkylation is given in Scheme 17.49,52–56 

Typical reaction conditions for N-alkylations are the use of DMF as solvent and the 

addition of a base in the presence of the amine precursor. 

 

Scheme 17 N-Alkylation with [18F]fluoroethyl bromide.49,52–56 
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As base, either TBAOH or cesium carbonate were used. After heating to 60–100 °C 

for 5–15 minutes, the products were usually purified by (semi)preparative HPLC and 

obtained in overall radiochemical yields of 10–40% (dc). However, some variations were 

reported depending on the labelling precursor. Murali and co-workers describe 

alkylation without any addition of base as otherwise epimerisation of the chiral centre 

occurs. Consequently, the coupling step required long reaction times and afforded the 

dopamine transporter (DAT) tracer 36 in a relatively low radiochemical yield of 34% 

(dc, last step). By performing the same reaction with the more reactive [18F]fluoroethyl 

triflate, the radiochemical yield could be increased to 84% for the coupling step and the 

overall reaction time was reduced from 148 to 96 minutes.49 

Schmaljohann et al. succeeded in the development of a cartridge based purification 

procedure for fast and reliable automated synthesis. They produced [18F]fluoroethyl 

choline 37, an imaging agent for prostate cancer and brain tumours, on two different 

commercially available synthesis units obtaining comparable overall radiochemical 

yields of 33% and 37% (dc) in 55 minutes.52 Though, comparable synthesis times could 

also be achieved including an HPLC purification procedure.55 

 

Scheme 18 Phenolic O-alkylation with [18F]fluoroethyl bromide.50,51,57–63 
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Scheme 18 (continued) 

Phenolic O-alkylation is the most popular application using [18F]fluoroethyl 

bromide as the building block. A variety of PET tracers have been synthesised based on 

this labelling strategy (Scheme 18).50,51,57–63  

The general reaction conditions are similar to N-alkylation: the phenolic precursor 

was reacted with [18F]fluoroethyl bromide under basic conditions at elevated 

temperatures for 2–20 minutes in DMF or DMSO. Although sodium hydroxide was often 

employed as base, the use of other bases has been reported depending on the reactivity 

of the precursor. Liu and co-workers for example described in their synthesis of 46 a 

coupling reaction with the weaker base potassium carbonate, to prevent degradation of 
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the lactone moiety.51 Furthermore, addition of sodium iodide to the coupling reaction 

increased the reactivity of the building block by in situ formation of the more reactive 

[18F]fluoroethyl iodide.48,51 

Next to O-alkylation of phenolic precursors, esterification of carboxylic acid 

precursors has been investigated (Scheme 19). Rami-Mark and co-workers obtained 

radiochemical yields of 67 ± 16% (dc) in the coupling reaction forming the dopamine 

transporter ligand 51. The reaction was carried out under TBAOH catalysis at a reaction 

temperature of 100 °C. In contrast to phenolic O-alkylation, no increase in yield was 

observed in the presence of sodium iodide.64 Another coupling reaction with an acid 

precursor was conducted by Philippe et al., in order to obtain a derivative of the melanin 

concentrating hormone receptor 1 antagonist SNAP-7941 52. Despite screening different 

solvents, temperatures and reaction times, no reaction of the radiolabelled building 

block was observed.65 

 

Scheme 19 Esterification of carboxylic acids with [18F]fluoroethyl bromide.64,65 

In conclusion, [18F]fluoroethyl bromide can be regarded a convenient reagent for 

radiofluorination of amines, phenols and carboxylic acids via alkylation. [18F]Fluoroethyl 

bromide can be synthesised fast and reliably and likewise the coupling reactions proceed 

fast, providing in one step the fluoroalkylated products in decay-corrected overall 

radiochemical yields of up to 40%. 

2.2.2.2 [18F]Fluoroethyl tosylate ([18F]FETos) 

The synthesis of [18F]FETos 54 was for the first time reported in 1987 by Block et al.66 

Since then, it has gained increasing interest as a building block in fluorine-18 chemistry. 

In comparison to its halide and sulfonate analogues, it offers favourable properties: its 

low volatility makes it more applicable to automation, the precursor ethylene ditosylate 
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has a high chemical stability and the building block is highly reactive in alkylating 

reactions.67 

The synthesis procedures of [18F]FETos 54 follow similar reaction conditions 

(Scheme 20). After azeotropic drying, the kryptofix-potassium carbonate-[18F]fluoride 

complex ([18F][K⊂K2.2.2]F) reacted with the precursor ethylene ditosylate 53 in MeCN. 

Temperatures for this reaction varied between 75 °C and 130 °C and reaction times were 

between 3 and 15 minutes. Radiochemical yields of 20–90% were reported depending 

on purification and whether the production was executed manually, semi-automated, 

automated or by using a microfluidic system. In addition to manual synthesis of the 

building block, production using automated modules has frequently been carried out, 

either for only [18F]FETos synthesis or also for subsequent alkylation reactions.67 Pascali 

et al. developed a microfluidic approach providing the crude radiolabelled building block 

in a radiochemical yield of 67% (based on radio-TLC analysis).38 

 

Scheme 20 Radiosynthesis of [18F]FETos. 

Of the different approaches to purify [18F]FETos, semipreparative HPLC generally 

provided the product with the highest chemical purity, leading to better conversions in 

the subsequent alkylation reaction. Furthermore, reduced formation of non-radioactive 

by-products was observed during the alkylation reaction which made final purification 

of the tracer easier.46 

As HPLC purification is time-consuming, several SPE-based purification procedures 

have been developed. However, most of them focus on the removal of free [18F]fluoride, 

potassium carbonate and kryptofix only.67 Moreover, significant losses of radioactivity 

during cartridge purification or the subsequent drying step were observed.68,69 Schoultz 

et al. presented a SPE procedure including precipitation of the precursor with acetic acid, 

followed by filtration. The building block was obtained in high radiochemical purity 

(>99%) and in radiochemical yields of over 45%.67 

Next to that, many successful one-pot methods have been described where 

[18F]FETos was used without intermediate purification before the subsequent alkylation 

reaction. Heinrich et al. reported an increased yield when using a one-pot strategy 

compared to a two-pot reaction with intermediate SPE purification, because they could 

avoid the activity losses on the cartridge.68 Majo et al. on the other hand obtained in a 

one-pot procedure only half of the radiochemical yield (20–25%) that was achieved 
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when using a two-pot procedure, with intermediate purification by semipreparative 

HPLC.70 

[18F]FETos has found widespread application as a building block (Scheme 21). 

Besides N- and O-alkylation, reactions of [18F]FETos with phosphonates and thiols are 

known. Further, next to phenolic O-alkylation aliphatic hydroxyl groups and aromatic 

carboxylic acids can also be labelled with [18F]FETos. 

 

Scheme 21 Reaction scope of [18F]FETos as building block. 

Numerous N-alkylations have been performed using [18F]FETos as a building block 

(Scheme 22).38,46,71-84 General reaction conditions involve the use of polar aprotic 

solvents such as DMSO, DMF or MeCN and temperatures ranging from 82 to 130 °C. 

Mostly, inorganic bases with a range of different pKa-values were employed depending 

on the reactivity of the corresponding amine reactant. Alkylation in absence of base has 

been reported for 56 and 58, which are potential imaging agents for matrix 

metalloproteinases and phosphatidylinositol 3-kinase, respectively.72,77 To achieve 

[18F]fluoroalkylation of 61 and 64, the amine reactants were treated with base (NaH or 

NaOH) prior to radiolabelling to generate the corresponding sodium salt. Radiolabelled 

61 and 64 are important PET tracers for translocator protein and VEGF, respectively.74,79 

Studies that involve Finkelstein-type alkylation reactions by addition of alkali 

iodides showed promising results indicating that in situ iodide exchange indeed could 

increase the yield of N-alkylation.85 However, this strategy has only been applied to 

access the serotonin 4 receptor tracer 60 and actually did not appear beneficial for the 

overall reaction outcome.78 The majority of tracers produced by alkylation with 

[18F]FETos were purified by semi-preparative HPLC. Only two SPE-based purification 

procedures were described in literature. They were developed for the cancer tracer 

fluoroethylcholine 68 and for tracer 59 that targets phosphatidyl serine to image cell 

death.49,93  
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Scheme 22 PET tracers synthesised by N-alkylation with [18F]FETos.49,57,82–95 

Fluoroethyl-ceritinib 55, an imaging agent for anaplastic lymphoma kinase, was 

purified by normal phase flash chromatography because no HPLC conditions were found 

to obtain the tracer in decent purity.83 

For some of the tracers in Scheme 22, direct and indirect labelling methods of the 

molecule were compared. In general no clear preference for either method could be 

concluded as in some cases (61 and 66) higher yields with direct labelling were found 

whereas in other cases (55 and 62) the indirect labelling strategy was more 

successful.80,83 

 



 
Chapter 2 

42 

 

Scheme 22 (continued) 

Many O-alkylations with [18F]FETos have been performed and Scheme 23 shows all 

tracers synthesised by fluoroalkylation of phenolic precursors.41,69,70,86–109 The synthesis 

is overall similar to the N-alkylations and reactions were carried out in DMF, DMSO, 

MeCN or mixtures of these solvents with water at elevated temperatures (80–130 °C). 

Reaction times ranged from 10 to 20 minutes. A variety of bases have been employed: 

amongst others cesium carbonate, sodium hydroxide and sodium hydride have been 

described. The choice of base and its concentration has a big influence on the yield of the 

alkylation reaction. Basic formation of the phenolate generates the nucleophile, which 

reacts with [18F]FETos in the radiolabelling.106 In approximately one third of all synthesis 

procedures, the phenolic precursor was deprotonated prior to alkylation to form the 

corresponding phenolate. The time of this preformation varied from a few minutes up to 
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several hours.93,94 The base was either filtered off after phenolate formation or added 

together with the precursor to the reaction mixture containing [18F]FETos.87,93 

 

Scheme 23 PET tracers synthesised by O-alkylation of phenolic precursors with [18F]FETos.41,69,70,86–109 
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Scheme 23 (continued) 
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Scheme 23 (continued) 
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Scheme 23 (continued) 

For some of the synthesised PET tracers, direct and indirect radiolabelling has been 

compared. For the tracers 71, 73, 103 and 105, higher labelling yields for indirect 

labelling compared to direct labelling have been reported. For example, Schieferstein et 

al. obtained an overall radiochemical yield of 47 ± 2% in the synthesis of the monoamino 

oxidase A tracer 73 with [18F]FETos as labelling reagent, whereas the direct labelling 

approach in their hands only led to decomposition of the precursor.41 In another study, 

73 was obtained via direct labelling in 23% decay corrected radiochemical yield.110 

For the tracers 85 and 83 however, direct labelling was superior to the indirect 

method. Purification of the phosphodiesterase 10A tracer 85, which was synthesised by 

the two-step reaction via [18F]FETos, turned out to be challenging and provided 85 in 

variable radiochemical purities, ranging from 92–99%. Therefore, direct labelling was 

performed which afforded 85 in high purity (≥99%) and comparable overall yields (25 ± 

9%).91 
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Next to aromatic O-alkylation, alkylation of aliphatic hydroxyl groups has also been 

reported with [18F]FETos. Schoultz et al. studied an automated synthesis procedure for 

the opioid receptor tracers 109a–c. The tracers were synthesised in a two-step one-pot 

procedure from [18F]FETos and the trityl-protected precursor 108. The aliphatic 

hydroxyl group in the precursor was first deprotonated by treatment for 5 minutes with 

sodium hydride to generate the alkoxide. Then [18F]FETos was added and efficient 

alkylation occurred within 10 minutes at 100 °C. In the second step, the trityl-protected 

hydroxyl group was removed under acidic conditions. After HPLC purification, all 

derivatives of 109 were obtained in decay-corrected radiochemical yields of 26 ± 8% 

(Scheme 24).67,111 

 

Scheme 24 Aliphatic O-alkylation with [18F]FETos.67,111 

Esterification of carboxylic acids with [18F]FETos has been studied by Heinrich et al. 

and Philippe et al.65,68 Effective esterification towards 111, a potential imaging agent for 

the melanin concentrating hormone receptor 1, was not observed when using 

[18F]FETos, and only direct radiofluorination in a microfluidic procedure proved 

successful.65 In contrast, 110, a tracer for myocardial perfusion, was synthesised 

successfully via esterification of the carboxylic acid precursor with [18F]FETos, 

performed in a one-pot procedure. After formation of [18F]FETos, the carboxylic acid was 

added under base catalysis in anhydrous MeCN for 30 minutes at 165 °C. The resulting 

product 110 was isolated by SPE or HPLC purification in an overall radiochemical yield 

of 36% (dc). Evaporation of the solvent during alkylation resulted in higher yields due to 

increased concentration of the reactants (Scheme 25).68 

James et al. described the synthesis of an acetylcholine esterase tracer via O-

alkylation of a phosphonate precursor (Scheme 26). The reaction was carried out in a 

microwave reactor with addition of cesium carbonate as base and with molecular sieves. 
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Without intermediate purification of [18F]FETos and after semi-preparative HPLC, the 

desired tracer was obtained in a yield of 6.5% (dc) after the alkylation step.112 

 

Scheme 25 O-Alkylation of carboxylic acids with [18F]FETos.65,68 

Analogous to N- and O-alkylation, S-alkylation has been successful to obtain the 

NMDA receptor tracer 115 (Scheme 27). Overall radiochemical yields were 4–9% (ndc) 

in a synthesis time of 3 to 4 hours. In contrast, direct radiolabelling conditions led to 

degradation of the precursor and no radiofluorinated product was obtained.43 

 

Scheme 26 O-Alkylation of a phosphonate with [18F]FETos.112 

In conclusion, [18F]FETos is an easy to synthesise, versatile building block which has 

been employed in the synthesis of many tracers because of its versatility and stability. It 

shows several advantages over the other [18F]fluoroethyl halides and sulfonates such as 

low volatility and decent reactivity. Furthermore, in many cases, [18F]FETos performs 

better or as good as the direct radiolabelling approach regarding conversion and 

purification of the PET tracer. 
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Scheme 27 Synthesis of 115 by S-alkylation.43 

2.2.2.3 [18F]Fluoroethyl sulfonate esters 

In addition to the two most applied [18F]fluoroethyl building blocks discussed above, a 

number of other [18F]fluoroethyl sulfonate esters have been employed for fluorine-18 

labelling. Most notably, [18F]fluoroethyl nosylate, brosylate, 3,4-dibromobenzene-

sulfonate and triflate have been used and selection of such alternative [18F]fluoro-

ethylation agents is mainly determined by e.g. enhanced stability or increased reactivity 

in the alkylation reaction. 

2.2.2.3.1 [18F]Fluoroethyl triflate 

[18F]Fluoroethyl triflate 120 is more reactive towards alkylation than [18F]fluoroethyl 

bromide and therefore affords [18F]fluoroethylated products under very mild reaction 

conditions such as room temperature and without the need to add a base. Furthermore, 

it enables [18F]fluoroethylation of less nucleophilic precursors. 

Three different strategies for [18F]fluoroethyl triflate synthesis have been developed 

(Scheme 28). Philippe et al. reported a one-step procedure starting from ethylene glycol 

bistriflate 117 and [18F][K⊂K2.2.2]F complex. The building block was obtained using triflic 

anhydride at elevated temperatures. Purification was performed with an alumina 

cartridge providing the product in a radiochemical yield of 19.2 ± 9.6% (dc).65 

Murali et al. on the other hand discovered that the moisture sensitive bistriflate 

precursor 117 suffers from poor stability even when stored at -20 °C. They observed low 

radiolabelling yields and therefore followed a two-step synthesis procedure with 

[18F]fluoroethyl bromide 31 as intermediate product. The bromide was distilled over an 

AgOTf/Graphpac column heated to 280–300 °C where it was converted to the 

corresponding triflate 120. They reported a total decay-corrected radiochemical yield of 

49%, which is more than twice as high as the yield reported for the one-step 

procedure.49 
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Scheme 28 [18F]Fluoroethyl triflate synthesis from [18F]fluoroethyl bromide or ethylene glycol 

bistriflate.49,65,113 

A third approach was developed by Peters et al. They used [18F]fluoroethanol 119 

as an intermediate that was synthesised from ethylene sulfate 118 in MeCN at 80 °C. 

After passing the crude reaction mixture through a QMA light cartridge, [18F]fluoro-

ethanol was treated with triflic anhydride. The reaction proceeded smoothly (1 min) and 

did not require elevated temperatures. [18F]Fluoroethyl triflate was obtained after 

purification using an Alumina N light cartridge in a radiochemical yield of 78% (dc) 

starting from dried [18F]fluoride.113 

Triflate building block 120 has been used in both N-alkylations and O-

alkylations.49,65,114 While O-alkylation towards 121 proved unsuccessful under common 

[18F]fluoroethylation conditions (the tracer could only be synthesised using direct 

radiofluorination in a microfluidic system), two successful N-alkylations were described 

(Fig. 1).65  

 

Figure 1 Tracers labelled with [18F]fluoroethyl triflate.49,65,114 
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As the triflate is more reactive than the bromide, milder reaction conditions could 

be applied resulting in potential imaging agents, 122 and 123, which were obtained at 

room temperature without the presence of base or any other additives, after a few 

minutes, in good radiochemical yields.49,114 The base-free reaction conditions proved to 

be a big advantage particularly in the synthesis of the dopamine transporter ligand 123, 

avoiding epimerisation of the chiral centre at the C2-position.49 

2.2.2.3.2 [18F]Fluoroethyl nosylate 

Since 2010, [18F]fluoroethyl nosylate has only been described once as building block in a 

radiosynthesis. Löser and co-workers presented the synthesis of the fluorinated 

cathepsin inhibitor 126 in a two-step one-pot process (Scheme 29).  

 

Scheme 29 [18F]Fluoroethyl nosylate synthesis and reaction towards cathepsin inhibitor 126.96 

[18F]Fluoroethyl nosylate was selected for the alkylation because the use of 

[18F]FETos resulted in low radiochemical yields (<26% based on radio-TLC analysis) due 

to degradation of the [18F]FETos under the reaction conditions. Furthermore, separation 

of the final product from [18F]FETos by semi-preparative HPLC was difficult and resulted 

in low radiochemical purity. 

The selected [18F]fluoroethyl nosylate 125 building block could be prepared from 

the corresponding ethylene dinosylate 124 in MeCN at 90 °C in 5 minutes (Scheme 29). 

After cooling the reaction mixture to room temperature, the subsequent coupling 

reaction was conducted without intermediate purification. Nosylate 125 was treated 

with the phenolic precursor using catalytic amounts of base at 115 °C for 10 minutes. 

This gave product 126 in 74% radiochemical yield (based on radio-TLC analysis; 26% 

after HPLC purification) in an overall synthesis time of 140 minutes.96 
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2.2.2.3.3 [18F]Fluoroethyl brosylate 

Like the other sulfonates discussed above, 2-[18F]fluoroethyl-4-bromobenzene sulfonate 

([18F]fluoroethyl brosylate) can be used as building block for the introduction of a 

[18F]fluoroethyl group. Its main advantage is that phenolic O-alkylation proceeds more 

efficiently compared to the use of the corresponding tosylate.115 Moreover, it is less 

volatile compared to [18F]FETos, which makes [18F]fluoroethyl brosylate more suitable 

for application in open vessel reactors (Scheme 30).116 

 

Scheme 30 [18F]Fluoroethyl brosylate synthesis and subsequent [18F]fluoroethylation.116,118 

The brosylate building block can be prepared by a procedure established by Voll 

and co-workers. Via a nucleophilic substitution reaction, ethylene-1,2-4-bromobenzene 

sulfonate precursor 127 could be radiofluorinated at elevated temperatures resulting in 

the desired brosylate in 35% (dc) radiochemical yield after HPLC purification.116,117 

The follow-up coupling reactions were conducted analogously to those with the 

other ethyl sulfonate building blocks. The phenolic precursors were reacted in DMF with 

[18F]fluoroethyl brosylate 128 under basic conditions at 100–110 °C. Catalytic amounts 

of cesium carbonate or TBAOH were employed as base. In this way the serotonin 

transporter imaging agent 129 was obtained in an overall radiochemical yield of 21% 

(dc). This is quite efficient compared to the alternative preparation of fluorine-18 

labelled oxytocin receptor ligand 130, which was obtained in a non-decay corrected 
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overall radiochemical yield of only 2.3%. Total synthesis time of both tracers was about 

150 minutes. 

Smith and co-workers also investigated the synthesis of PET tracer 130 via direct 

radiofluorination of the respective tosylate precursor and reported a non decay-

corrected radiochemical yield of 19%, which is 8 times higher than the two-step 

synthesis.116,118 

2.2.2.3.4 [18F]Fluoroethyl-3,4-dibromobenzenesulfonate 

In 2005 Musachio et al. studied other [18F]2-fluoroethyl brosylates to mediate 

[18F]fluoroethylation. Their studies revealed that [18F]fluoroethyl-3,4-dibromobenzene-

sulfonate 132 is highly reactive and quite stable and achieves high yields in alkylating 

reactions (Scheme 31).115 

Still, thus far only one tracer synthesis based on [18F]fluoroethylation with 

[18F]fluoroethyl-3,4-dibromobenzene sulfonate 132 has been reported. Bhattacharjee 

and co-workers described the synthesis of a fluorine-18 labelled tracer for A2A receptor 

imaging. In the first step, ethane-1,2-diyl-bis(3,4-dibromobenezenesulfonate) 131 was 

reacted with the dried [18F]fluoride at 120 °C for 5 minutes. After that, the resulting 

building block was purified by semi-preparative HPLC and reacted with the respective 

phenolic precursor in presence of TBAOH as base. Purification by semi-preparative HPLC 

afforded the radiotracer 133 for the striatal adenosine A2A receptor in an overall 

radiochemical yield of 14.5 ± 3.6% (ndc).119 

 

Scheme 31 [18F]Fluoroethyl-3,4-dibromobenzene sulfonate synthesis and reaction to the A2A receptor 

tracer 133.119 
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2.2.3 [18F]Trifluoromethane 

The trifluoromethyl functional group is well established for its favourable in vivo 

properties. Therefore, it is a group incorporated in many active pharmaceutical 

ingredients. Consequently, the introduction of fluorine-18 using trifluoromethylation has 

found widespread interest. A highly effective way to achieve this is to couple 

[18F]trifluoromethane to aryl boronic acids and iodides in a copper(I) mediated reaction. 

However, this approach mostly gave the products in poor specific activity, which is a 

disadvantage for PET imaging of low density receptors in particular. 

Difluoroiodomethane 134 and the difluoromethylsulfonium salt 142 have been 

explored as alternative precursors for [18F]trifluoromethane synthesis (Schemes 32 and 

35). Based on the precursor difluoroiodomethane 134, van der Born et al. developed two 

different methods to synthesise [18F]trifluoromethane, providing the product either in 

high yield or increased specific activity. In one method, [18F]fluoride was eluted with 

K2CO3/K2.2.2 and azeotropically dried following standard procedures. Subsequent 

reaction with difluoroiodomethane 134 for 10 minutes at room temperature afforded 

[18F]trifluoromethane 135 in a radiochemical yield of 60% with a specific activity of 1 

GBq/µmol. Purification was carried out by distillation over a silica Sep-Pak cartridge. The 

low specific activity is most probably caused by the polyfluorinated precursor. Reducing 

the amount of precursor 40-fold together with decreasing the amount of base for 

[18F]fluoride elution from the cartridge gave an average radiochemical yield of only 37%, 

but specific activity increased to 32 GBq/µmol.120 

 

Scheme 32 [18F]Trifluoromethane synthesis with difluoroiodomethane as precursor. 

To introduce the [18F]trifluoromethyl group into PET tracers 137 and 138 for 

imaging breast cancer and other tumours, copper-mediated reactions with aryl iodides 

and aryl boronic acids showed promising results. [18F]Trifluoromethylation of aryl 

iodides was carried out in the presence of copper(I) bromide and potassium tert-

butoxide as a base. Further, triethylamine trihydrofluoride was employed to stabilise the 

resulting copper–CF3 complex. Reactions were complete after 10 minutes at 130 °C. The 

procedure was similar for trifluoromethylation of aryl boronic acids, but oxidation of 

copper(I) was required by purging the reaction solution with air. Reactions were 

complete within 1 min at room temperature, which is considerably faster compared to 

the reactions using analogous iodide precursors. 
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In Scheme 33, the radiosynthesis of two tracers labelled by [18F]trifluoro-

methylation using [18F]trifluoromethane is depicted. Both were synthesised from the 

available iodide precursor as well as from the boronic acid precursor. Direct comparison 

of both procedures showed that use of the boronic acid precursors offered more 

favourable coupling conditions and ultimately higher radiochemical yields.120 

 

Scheme 33 PET tracer synthesis by [18F]trifluoromethylation of iodide and boronic acid precursors.120 

In addition to the above methods, a one-pot procedure to synthesise [18F]trifluoro-

methylated tracers in an automation compliant manner has been developed by Rühl et 

al. (Scheme 34). 

 

Scheme 34 One-pot synthesis of [18F]trifluoromethylated arenes.121 
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In order to find the most efficient Cu–ligand system for the [18F]trifluoro-

methylation reaction in presence of the dried [18F]fluoride, different ligands and sources 

of reactive [18F]fluoride were screened. Optimal yields of [18F]trifluoromethylated 

product were obtained with a KHCO3/kryptofix/DIPEA mixture. Utilizing the optimised 

conditions, three potential PET tracers 139, 140 and 141 were synthesised in good 

radiochemical yields of 73 to 85%. A drawback is that the tracers were obtained in only a 

very low specific activity of 139 MBq/µmol.121 

Ivashkin et al. employed difluoromethylsulfonium salt 142 as precursor for the 

[18F]trifluoromethane synthesis (Scheme 35). However, [18F]trifluoromethane was not 

isolated, but distilled into a solution containing a copper(I) halide and potassium tert-

butoxide. This instantaneously formed the [18F]CuCF3 complex 136, which was 

subsequently treated with a range of different model iodides or boronic acids. Again, the 

tracers were obtained in very low specific activity of 100 MBq/µmol, comparable to the 

one-pot procedure described by Rühl et al.122 

 

Scheme 35 [18F]Trifluoromethane synthesis with the difluoromethylsulfonium salt 142 as precursor.122 

In conclusion, production of [18F]trifluoromethane with high specific activity 

remains a challenge. A method has however been developed providing [18F]trifluoro-

methane with an acceptable specific activity of 32 GBq/µmol. Aryl iodides and boronic 

acids have successfully been labelled with [18F]trifluoromethane as building block. 

[18F]Trifluoromethylation of boronic acids proceeds fast and under mild reaction 

conditions and aryl iodides have shown to be valuable precursors in one-pot syntheses 

of relevant tracers. Hence, [18F]trifluoromethylation with [18F]trifluoromethane holds 

great promise for fluorine-18 labelling of compounds containing native trifluoromethyl 

groups. 
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2.2.4 [18F]Trifluoroethyl tosylate 

Application of [18F]trifluoroethyl tosylate as a building block enables the introduction of 

fluorine-18 via the trifluoroethyl group. Two different PET tracers have been synthesised 

using [18F]trifluoroethyl tosylate (Schemes 36 and 37).  

Suehiro et al. developed the synthesis of [18F]trifluoromisonidazole ([18F]TFMISO) 

146, a hypoxia tracer for bimodality imaging with MRI and PET. In this context, 2,2,2-

[18F]trifluoroethyl tosylate 144 was found to be an excellent [18F]trifluoroethylation 

agent, as it reacts smoothly with alcohols to the corresponding [18F]trifluoroethyl ethers 

(Scheme 36). 

 

Scheme 36 Synthesis of the hypoxia tracer [18F]TFMISO.123 

The building block was synthesised via 18F–19F exchange from 2,2,2-trifluoroethyl 

tosylate 143. For this, the unlabelled compound was heated in presence of 

[18F][K⊂K2.2.2]F at 150 °C. After 10 minutes, the product was separated from unreacted 

[18F]fluoride by extraction with ether. A specific activity of this building block is not 

reported, but a low specific activity is expected due to the isotopic exchange 

methodology that was employed here. 

Starting from [18F]trifluoroethyl tosylate, the hypoxia tracer was subsequently 

prepared via a 2-step procedure. First, [18F]trifluoroethyl tosylate was treated with 

deprotonated 3-chloro-1,2-propanediol, in the presence of sodium hydride. After a 45–

60 minutes reaction at room temperature, the desired [18F]trifluoroethoxy intermediate 

145 was obtained with good radiochemical yields of 57 ± 10% (analytically determined). 

In the next step, intermediate 145 was converted to [18F]TFMISO in a reaction with 2-

nitroimidazole under basic conditions using NaOMe. The final product 146 was obtained 

in a radiochemical yield of 67 ± 16% (analytically determined) (Scheme 36). 

Besides the procedure described above, other routes have been investigated to 

arrive at the same final compound. The analogue 2,2,2-[18F]trifluoroethyl iodide was 

synthesised with an excellent labelling efficiency (90–95%), but underwent nucleophilic 

substitution at the fluorinated carbon atom instead of substitution of the iodide. 
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Furthermore, Suehiro et al. tried to directly label the complete precursor molecule of 

146, however this led to intramolecular nucleophilic substitution of the nitro group.123 

Riss et al. synthesised [18F]trifluoroethyl tosylate via nucleophilic addition of 

[18F]fluoride to 1,1-difluorovin-2-yl-4-toluene sulfonate 147 (Scheme 37).  

 

Scheme 37 [18F]Trifluoroethyl tosylate synthesis and coupling towards 148 and 149.97,124,125 

Extensive studies to find optimal reaction conditions were conducted and in the end 

5 minutes reaction in DMSO at 85 °C proved sufficient to produce the desired compound. 

Trace amounts of water were crucial for product formation as in the absence of water 

the precursor was subject to an addition–elimination reaction resulting in fluorine-18 

labelled 147. As the addition of ppm amounts of water appears to be rather 

cumbersome, the influence of low molecular weight alcohols on the reaction has been 

explored. Best results were obtained with 1 M 2-propanol in DMSO and radiochemical 

yields up to 67% (based on radio-HPLC analysis) were observed. Furthermore, specific 

activity of the fluoroethyl building block has been examined. A good specific activity (86 

GBq/µmol) was obtained even with low quantities of [18F]fluoride at the start of 

synthesis (5 GBq).124 

[18F]Trifluoroethyl tosylate was applied in both O- and N-alkylations resulting in 

two potential imaging agents, 148 and 149 (Scheme 37). The coupling reaction was 

conducted in DMF using cesium carbonate as base. N-Alkylation (19%) proceeded in a 

much lower yield than O-alkylation (91%), which was attributed to the tropane scaffold 

used in this specific case.125 

In summary, 2,2,2-[18F]trifluoroethyl tosylate is a useful building block, forming 

[18F]trifluoroethyl ethers under relatively mild conditions. The possibility of native 

radiofluorination and the enhanced stability of the trifluoroethyl group towards 
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metabolic degradation compared to [18F]fluoroethylates make it a promising building 

block for fluorine-18 labelling in the future. 

2.2.5 Long chain (n > 2) fluorine-18 labelled aliphatic halides and sulfonates 

Apart from [18F]fluoromethyl and [18F]fluoroethyl halides and sulfonates, building blocks 

with longer alkyl chains have been used for PET tracer synthesis. PET tracers with longer 

alkyl chains show enhanced in vivo stability, improved target affinity or selectivity and 

more favourable pharmacokinetics compared to the corresponding fluoroethylated or 

fluoromethylated analogues.69,89,126 

Scheme 38 summarises various long chain aliphatic building blocks containing a 

tosylate as leaving group. Especially [18F]fluoropropyl tosylate 150 is quite popular. 

Fluoroalkylations to access homologues with a chain length of n = 6 proved successful 

with this reagent. Furthermore, unsaturated and cyclic derivatives of [18F]fluorobutyl 

tosylate (154–156) as well as polyethyleneglycol derived building blocks (157 and 158) 

have been employed in PET tracer synthesis. 

The synthesis of all these tosylate fluorine-18 labelled aliphatic building blocks was 

similar to the synthesis of [18F]FETos 54. The ditosylate precursor was reacted with 

dried [18F][K⊂K2.2.2]F complex in MeCN at temperatures of 85–130 °C. The reported 

yields of the radiofluorination are comparable to those using [18F]FETos, which 

demonstrates that the procedure is generally applicable and not depending on chain 

length. The resulting fluorine-18 labelled aliphatic building blocks can be purified in 

different ways. For example, [18F]fluoropropyl tosylate 150 was purified by either HPLC 

or silica Sep Pak. In addition, one-pot procedures including the alkylation step were also 

applied.  

 

Scheme 38 Synthesis of various long chain aliphatic building blocks from the corresponding ditosylate. 
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Although similar radiochemical yields for the one-pot strategy and two-step 

procedure including HPLC purification have been described,78 low specific activities for 

the products from the one-pot synthesis have been reported. The main reason for this is 

that the coupling product of the remaining ditosylate and the tracer precursor could not 

be separated from the actual PET tracer.126 For two of the butane derived fluorine-18 

labelled building blocks, 151 and 156, HPLC purification has been reported.  

1-[18F]Fluoro-4-tosylbut-2-ene 155, the longer chain [18F]fluoroalkyl halides (152 and 

153) and the PEG derived building blocks (157 and 158) were purified by silica Sep-Pak, 

while 1-[18F]fluoro-3-tosyl cyclobutane 154 was purified by C18 Sep-Pak.131 For 

[18F]fluoropropyl tosylate 150, automated synthesis procedures have been developed 

including a microfluidic approach.38 

As discussed, [18F]fluoropropyl tosylate 150 is used most often for longer chain 

alkylations. Using this building block, the compounds 160, 162 and 164 were obtained 

by N-alkylation of amine precursors (Figure 2). 

Reactions were carried out in DMF at 130 °C for 20 to 30 minutes. When 

intermediate purification of the building block 150 was necessary, cesium carbonate was 

added as base. When a one-pot method was applied, the potassium carbonate present 

from the first reaction served as a base to catalyse the subsequent coupling reaction of 

150. 

Generally, moderate to good radiochemical yields have been obtained,38,78,127 

(except for the 5-HT4 receptor tracer 164). The other tracers depicted in Figure 2 were 

synthesised by O-alkylation of the phenolic precursor with 150.38,76,69,70,88,89,126–129 The 

alkylation reactions were performed in DMSO, DMF or MeCN at around 100 °C and 

different bases were employed (NaH, NaOH, K2CO3 or TBAOH). The precursor of the 

serotonin transporter ligand 167 was pre-incubated with the base prior to 

[18F]fluoropropylation to form the phenolate, thereby facilitating nucleophilic 

substitution.129 

Overall radiochemical yields of the tracers synthesised with [18F]fluoropropyl 

tosylate 150 were variable and ranged from low to good. Shalgunov et al. conducted a 

comparative study on the two dopamine D2/3 receptor tracers 161 and 166, labelled 

with [18F]fluoropropyl tosylate as well as [18F]fluorobutyl tosylate (169, 170) and 

[18F]FETos (81, 99). Similar yields were obtained for 161, 169 and 81 as well as 166, 

170 and 99, showing that the chain length of the building block had no major effect on 

the reaction kinetics.89 
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Figure 2 PET tracers synthesised from the building block [18F]fluoropropyl tosylate.38,57,69,78,88,89,126–129 

Bartholomä et al. developed a synthesis of 168, which is a known imaging agent for 

myocardial perfusion, by esterification of the carboxyl group with [18F]fluoropropyl 

tosylate 150. In this case, the corresponding lactone served as precursor and the 

reaction was carried out in MeCN at 165 °C with DIPEA as base. They reported a decay-
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corrected radiochemical yield of 18 ± 1% in a total synthesis time of 120 minutes. In 

comparison to the [18F]fluoroethyl analogue, [18F]fluoroproyl tracer 168 showed and 

improved stability.126 

Four different butane derived building blocks have been employed for PET tracer 

synthesis. Next to the parent n-butane derivative 151, also cyclobutane 154, butene 155 

and butyne 156 analogues have been used in N- and O-alkylations (Figure 3). The two 

imaging agents for the dopamine D2/3 receptor, 169 and 170, were synthesised by 

Wieringen et al. and Shalgunov et al. via O-alkylation of the phenolic precursor with 

[18F]fluorobutyl tosylate 151 in moderate overall radiochemical yields of 5–6% (dc) and 

7–8% (dc), respectively. Using building block 151, resulted in increased lipophilicity of 

the tracer and thereby enhanced ability to penetrate the blood brain barrier.89,101 

 

Figure 3 PET tracers synthesised by indirect labelling with [18F]fluorobutyl tosylate and 

derivatives.46,89,102,130,131 

Also, four tropane derivatives, 171a–c and 172, were developed for imaging the 

dopamine transporter. The fluoroalkylation reactions could be carried out without base 

catalysis.46,130 Riss et al. reported a quite efficient automated alkylation of the amine 

present in the tropane scaffold employing [18F]fluorobutyne 156 in an overall 

radiochemical yield of 25% (ndc). Direct labelling of tropane 172 was also reported and 

proceeds in higher yield (32–36%) under microwave conditions, but this approach did 

not allow for automation.46 Furthermore, Franck et al. introduced the [18F]fluoro-
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cyclobutyl group labelled amino acid tyrosine 173 using 154, to enhance the metabolic 

stability of the PET tracer (cycloalkanes show in general better metabolic stability than 

the n-alkyl counterparts).131 

[18F]Fluoroalkyl tosylates with a carbon chain length longer than 4 were only 

applied in the synthesis of triphenylphosphonium salts for myocardial perfusion imaging 

(Figure 4). [18F]Fluoropentyl tosylate 152 and [18F]fluorohexyl tosylate 153 were 

coupled to triphenyl phosphine in toluene at 220 °C. After purification by semi-

preparative HPLC, both PET tracers were obtained in decay corrected radiochemical 

yields of 15 to 20%, respectively.132 

 

Figure 4 [18F]Fluoroalkyl triphenylphosphonium salts for myocardial perfusion imaging.132 

The polyethylene glycol derived building blocks 2-(2-[18F]fluoroethoxy)ethyl 

tosylate 157 and 2-(2-(2-[18F]fluoroethoxy)ethoxy)ethyl tosylate 158 have also been 

used in the synthesis of myocardial perfusion imaging agents (Figure 5). 

 

Figure 5 [18F]FluoroPEGylated tracers for myoardial perfusion imaging.126,132–134 
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Kim et al. reported the synthesis of [18F]fluoroPEGylated phosphonium salts 175 

and 177 via reaction of triphenyl phosphine with 2-(2-[18F]fluoroethoxy)ethyl tosylate 

158 in toluene at 220 °C, followed by purification over a small silica cartridge.132,133 

Bartholomä et al. presented several 2-(2-[18F]fluoroethoxy)ethyl esters (178a–c and 

179) and a (2-(2-[18F]fluoroethoxy)ethoxy)ethyl ester (176) of rhodamine B as myo-

cardial perfusion imaging agents. For the labelling of the lactone precursors, a one-pot 

method was applied in which the coupling reaction was performed in MeCN at 160 to 

165 °C under base-catalysis (DIPEA). All tracers were obtained in good overall radio-

chemical yields (~20% (dc)) in a synthesis time of 20 minutes. In vitro and in vivo 

biological evaluations of 179 showed that this tracer is superior to the ethyl, propyl and 

triethyleneglycol analogues with respect to imaging characteristics and metabolic 

stability. This shows that the prosthetic group significantly influences the pharmaco-

kinetics and metabolism of the PET tracer.126,134 

 

Scheme 39 Synthesis and reaction of meta- and para-[18F]bromomethylfluoromethylbenzene.136 

Two other building blocks for indirect labelling of triphenyl phosphines have been 

presented by Zhao et al. in 2014. They synthesised 1-bromomethyl-3-[18F]fluoromethyl-

benzene 181a and 1-bromomethyl-4-[18F]fluoromethylbenzene 181b building blocks 

using a modified procedure of De Vries et al. (Scheme 39).135 The myocardial perfusion 

tracers 182a and 182b were obtained via a one-pot procedure without intermediate 

purification of the building blocks in decay-corrected radiochemical yields of 52 ± 9% 

and 51 ± 7%, respectively.136 

Not only [18F]fluoropropyl tosylate 150, but also the corresponding bromide has 

been employed as building block for fluoroalkylation (Scheme 40). [18F]Fluoropropyl 

bromide 184 was synthesised by treatment of the bromopropyl triflate with dried 

[18F][K⊂K2.2.2]F complex in o-dichlorobenzene and subsequent distillation at 150 to 180 

°C into cooled DMF (-15 to -20 °C) containing the precursor and sodium hydroxide. After 

distillation, the trapping solution was heated for 10 minutes at 120 °C to react the 

building block with the phenolic precursors and generate the two PET tracers 185 and 
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186, albeit in rather low overall radiochemical yields (5% and 2%, respectively).57,58 

Fujinaga et al. hypothesised that this can be explained by a decreased inductive effect of 

the fluorine atom further along the chain.58 

 

 

Scheme 40 [18F]Fluoropropyl bromide as building block for [18F]fluoroalkylation.57,58 

2.2.6 Fluorine-18 labelled azides 

Many labelled azides have found widespread application in tracer synthesis. In 

particular, [18F]fluoroethyl azide 188 (Scheme 41) and deoxy-[18F]fluoroglucopyranosyl 

azides have been employed as building block. They can be coupled to PET tracers by the 

Huisgen 1,3-dipolar cycloaddition, also called copper(I)-catalysed azide-alkyne cyclo-

addition (CuAAC) or ‘click’-reaction. Alternatively, the traceless Staudinger ligation has 

been employed. 

In the CuAAC, 1,4-disubstituted triazoles are formed by reaction of an azide group 

with an alkyne functionality under copper(I) catalysis. Using the CuAAC protocol 

introduces fluorine-18 under mild aqueous conditions. Conditions that are compatible 

with highly functionalised polar biomolecules.137 Furthermore, these ‘click’-reactions 

usually show high specificity, robustness and yields.138 Many different functional groups 

are well tolerated, making additional protection and deprotection steps unnecessary.139 

Moreover, the click reaction is an excellent method to build up libraries of compounds 

for screening campaigns to ultimately select the best PET tracer.140 

As an alternative coupling reaction to the CuAAC, the traceless Staudinger ligation 

can be employed. This reaction of an azide with a phosphine-substituted thioester leads 

to the formation of an amide bond. Therefore, it represents a useful strategy for the 
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labelling of amino acids and peptides. It proceeds under mild reaction conditions and no 

metal catalysis is required.141,142 

Both the CuAAC and the Staudinger ligation methods however have also 

disadvantages, for example, the in vivo toxicity of the copper(I) used in the CuAAC and 

the instability of phosphine reagents used in the Staudinger ligation due to oxidation.143 

In the following sections, the synthesis of [18F]fluoroethyl azide and deoxy-

[18F]fluoroglucopyranosyl azides as well as their application in PET tracer syntheses will 

be discussed. 

2.2.6.1 [18F]Fluoroethyl azide 

[18F]Fluoroethyl azide 188 was introduced as building block in the CuAAC by Glaser and 

Årstad in 2007.144 Since then, it has been applied in the synthesis of many PET tracers. 

Besides [18F]FETos, [18F]fluoroethyl azide is the most used building block in aliphatic 

indirect fluorine-18 labelling. Many of the syntheses of [18F]fluoroethyl azide 188 

followed the established protocol of Glaser and Årstad, treating 2-azidoethyl 4-toluene-

sulfonate with the dried [18F][K⊂K2.2.2]F complex in MeCN at 80 °C (Scheme 41). The 

product was subsequently co-distilled with MeCN at 130 °C into a trapping vial 

containing MeCN. Typically, high radiochemical yields of >80% (analytically determined) 

were observed using this procedure, but due to the moderate distillation efficiency, the 

building block was only obtained in decay-corrected radiochemical yields of 40–65%.144–

146 Hence, some modifications of the procedure have been reported. Besides varying the 

reaction temperatures (80–110 °C) and times (2–15 minutes), particular attention was 

paid to the purification procedure of the building block after the reaction was complete. 

Distillation temperatures ranging between 130 and 140 °C and cooling with liquid 

nitrogen or dry ice to make trapping more efficient were tried to improve the 

yields.137,147,148 

 

Scheme 41 Synthesis of [18F]fluoroethyl azide. 

Hugenberg et al. described distillation during the reaction time to increase the non 

decay-corrected yield by shortening the synthesis time.149 However, none of the 

modifications of the distillation procedure described above led to a significant increase 

in radiochemical yield of 188. Kelly et al. found that addition of more MeCN to the 

reaction vial during distillation did increase the efficiency, but the higher MeCN content 
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in the purified building block solution led to lower yields in the subsequent click 

reaction.150 This was also reported by other research groups.138 

Next to the flow-and-trap-distillation method, a vacuum distillation method has 

been developed by Zhou et al. They reported radiochemical yields of over 80% (dc) 

within 10 minutes including formation of [18F]fluoroethyl azide, distillation into a dry ice 

cooled trapping vial and warming up to room temperature.151 However, due to co-

distillation of the side-product vinyl azide, the precursor for the follow-up reaction was 

needed in large excess. This makes the method unsuitable for the high specific activity 

labelling of macromolecules due to the pseudo-carrier present. 

Furthermore, two different cartridge purification procedures have been developed 

in order to facilitate automation. Bejot et al. and Carroll et al. employed a polyfluorinated 

sulfonate precursor instead of 2-azidoethyl 4-toluenesulfonate (Scheme 41), which could 

be separated from [18F]fluoroethyl azide 188 by fluorous solid phase extraction 

(FSPE).140,152 Another approach used a silica-based C18 cartridge and a Water Oasis HLB 

cartridge in series.138 

For some tracer syntheses, successful one-pot procedures have been 

described.153,154 However, the one-pot method often promotes side-reactions, which 

necessitates elaborate purification of the PET tracer. Automated syntheses have been 

developed as well. Ackermann et al., for example, reported an automated synthesis on 

the Flex Lab module including purification by vacuum distillation.155 

Scheme 42 lists all PET tracers synthesised using the [18F]fluoroethyl azide building 

block via the CuAAC method.44,137,138,140,140–149,152,153,155–169 In most cases, the [18F]fluoro-

ethyl azide reacts with an alkyne precursor in the presence of a Cu(I)- or Cu(II)-catalyst 

and sodium ascorbate as reducing agent. Copper sulfate was used in the majority of the 

tracer syntheses reported. Here, Cu(II) is reduced by sodium ascorbate to the reactive 

Cu(I) species.147,153,169 In addition, the use of Cu(II) acetate160 as well as Cu(I) iodide has 

been reported. Although when Cu(I) iodide is employed the catalyst is already present in 

its active species, sodium ascorbate is still used since oxidation from Cu(I) to Cu(II) 

during the reaction is well known.156,161 Ackermann et al. reported that with a freshly 

prepared mixture of Cu(I) iodide and sodium ascorbate, better results in the labelling of 

the tumour cell proliferation imaging agent 207 were obtained than with the 

conventional CuSO4/Na-ascorbate system.156 In another article, Ackermann et al. 

investigated Cu(CH3CN)4PF6 as a catalyst system, because it is soluble in organic solvent 

and would be more compatible for use in an automated synthesis module. Unfortunately, 

a lower yield of the tracer 207 was observed with the new catalyst system.155 

Different solvent systems have been used in the CuAAC. Often water or an aqueous 

buffer solution such as phosphate buffer is used to dissolve the copper catalyst and the 

sodium ascorbate.146,150 On the other hand, the alkyne precursor is mostly added in DMF, 
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but also MeCN, DMSO and aqueous media were used.137,150,156,164 Depending on the 

applied purification procedure, the azide building block is added either in the distillation 

trapping solution or in the solvent eluted from the intermediate SPE purification 

cartridge.160,162 The MeCN from co-distillation or trapping led in some cases to a decrease 

in coupling efficiency.167  

 

Scheme 42 PET tracers synthesised from [18F]fluoroethyl azide in a CuAAC.44,137,138,140,145–149,152,153,155–169 
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Scheme 42 (Continued) 
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Scheme 42 (Continued) 
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Scheme 42 (Continued) 
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For the prostate-specific membrane antigen (PSMA) tracers 222 and 223, higher 

MeCN content led to a decrease in yield from 50% to <25% (measured by radio-

HPLC).150 However, a few successful click reactions were also performed in MeCN.55,156 

The presence of DMF has been described as a necessary condition to maintain the level 

of Cu(I) in the reaction solution.151 

Other additives have been employed in some of the tracer syntheses too. The use of 

the base DIPEA161 as well as the Cu(I) stabilizing agents TBTA (tris(benzyltriazolyl-

methyl)amine) and BPDS (bathophenanthroline disulfonic acid disodium salt) have been 

reported.157,168 TBTA and BPDS served as auxiliary copper(I) chelators153 and accelerated 

the reaction. They were found to be especially helpful in one-pot strategies, for example 

in the synthesis of imaging agents 217–220 for the multidrug resistance-associated 

protein 1.153 However, the presence of BPDS or TBTA was not necessary for successful 

one-pot synthesis. Chen et al. demonstrated this in the synthesis of PSMA inhibitor 221 

without ligand in an overall radiochemical yield of 14 ± 1% (ndc). 

Most of the PET tracers shown in Scheme 42 were purified by semi-preparative 

HPLC, but purification was not always successful. In some cases, the alkyne precursor 

could not be separated from the product, leading to low specific activities.163,166 For the 

tumour proliferation imaging agents 202a and 202b, direct labelling was more 

successful giving increased specific activities (20–210 GBq/µmol instead of 0.3 

GBq/µmol) at comparable overall radiochemical yields (7% ndc).163 

Based on the CuAAC with [18F]fluoroethyl azide, a ‘‘multiclick’’ approach has been 

developed for the synthesis of the apoptosis tracers 227b–d. Up to four different alkynes 

were synthesised in one pot from one batch of [18F]fluoroethyl azide at the same time. 

This makes the CuAAC a valuable tool for the screening of potential PET tracers. 

However, the purification of the reaction mixtures turned out to be challenging and 

tracers with low purity were obtained, because the alkyne precursors could not be 

separated from the labelled compounds.139,169 

Carroll et al. presented the first examples (compounds 229–232) of fluorine-18 

labelled compounds synthesised by traceless Staudinger ligation with [18F]fluoroethyl 

azide (Scheme 43).  The reaction was carried out either in a mixture of tetrahydrofuran 

(THF) and water or DMF and water, at 80 °C for 30 minutes or at 120 °C for 15 minutes. 

The labelled compounds could be obtained in radiochemical yields of >95% (analytically 

determined).141 Gaeta et al. were the first to synthesise and isolate a PET tracer (228) via 

this method. Labelling proceeded in a mixture of DMF and MeCN within 15 minutes at 

130 °C and provided the GABAA tracer 228 in an overall radiochemical yield of 7% 

(ndc).142 
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Scheme 43 PET tracers synthesised from [18F]fluoroethyl azide in a traceless Staudinger reaction.141,142 

In conclusion, [18F]fluoroethyl azide is a useful building block for the fluorine-18 

labelling of biomolecules and small molecule PET tracers under mild conditions without 

need of protecting groups. 

2.2.6.2 Deoxy-[18F]fluoroglucopyranosyl azide 

Deoxy-[18F]fluoroglucopyranosyl azides have been used as building blocks in CuAAC and 

were first introduced by Maschauer et al. in 2009.170 Besides introduction of fluorine-18, 

this building block was employed frequently to increase polarity of the PET tracer and 

thereby improve its pharmacokinetic properties. 

2-Deoxy-2-[18F]fluoroglucopyranosyl azide can be prepared in a two-step proce-

dure starting from the mannosyl precursor 233 (Scheme 44). In the first step, 

nucleophilic substitution of the triflate group with [18F][K⊂K2.2.2]F was conducted at 85 

°C for 5 minutes. HPLC purification provided the acetyl-protected product 234 in a 

radiochemical yield of 67% (ndc). In the second step, deprotection of the hydroxyl 

groups was carried out by addition of aqueous sodium hydroxide at 60 °C. After 

complete deacetylation, the solution was neutralised with hydrogen chloride solution 

and directly used in the CuAAC reaction.171 Only minor alterations since the initially 

developed synthesis of the building block have been reported. Fischer et al. showed that 

a cartridge based purification procedure instead of a time consuming HPLC purification 

yielded 75% of protected 2-deoxy-2-[18F]fluoroglucopyranosyl azide 234.172 

Maschauer et al. described also the synthesis of 6-deoxy-6-[18F]fluorogluco-

pyranosyl azide, analogous to the synthesis of 2-deoxy-2-[18F]fluoroglucopyranosyl azide 
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235, obtained from its tosyl precursor. They found that addition of all reactants in 

buffered solution made neutralisation prior to the coupling reaction unnecessary.173 

 

Scheme 44 Synthesis of 2-deoxy-2-[18F]fluoroglucopyranosyl azide with subsequent click reaction. 

The coupling of building block 234 to the alkyne precursors was carried out in a 

CuAAC reaction, resulting in the PET tracers which are shown in Figure 6.160,170,172,174–177 

The CuAAC proceeded in a one-pot two-step reaction together with the deprotection of 

234. After deacylation and neutralisation, 2-deoxy-2-[18F]fluoroglucopyranosyl azide 

235 was reacted with the corresponding alkyne precursor in an aqueous solution of 

copper(II)acetate or sulfate and sodium ascorbate. The desired product was formed in 

10 to 15 minutes at slightly elevated temperatures (50–60 °C). 

Typically, the products were purified by semi-preparative HPLC and obtained in 

overall radiochemical yields of 1–40% (dc) in a total reaction time of 70–180 minutes. 

Several improvements to the original reaction conditions have been published by 

Maschauer et al. They described a significant increase of product formation in the 

presence of ethanol in the aqueous reaction solution.173 Furthermore, THPTA (tris(3-

hydroxypropyltriazolylmethyl)amine) and BPDS (bathophenanthroline disulfonic acid 

disodium salt) were presented as agents accelerating the CuAAC reaction. The use of 

BPDS enables click reactions in 5 minutes at room temperature.174 

To conclude, 2-deoxy-2-[18F]fluoroglucopyranosyl azide 235 is a useful building 

block for fluorine-18 labelling and proved to be especially useful for labelling peptides. It 

has several advantages: the glucosyl moiety enhances, due to its hydrophilicity, the in 

vivo properties of the PET tracer and the CuAAC is a reliable and efficient procedure with 

high regioselectivity.160,172 
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 Figure 6 PET tracers labelled with 2-deoxy-2-[18F]fluoroglucopyranosyl azide.160,170,172–177 
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2.2.7 Fluorine-18 labelled alkynes 

A large range of different fluorine-18 labelled alkynes have been used in PET tracer 

synthesis. Scheme 45 summarises the different types of precursor used since 2010. Alkyl 

precursors 243 and polyethylene glycol (PEG) derived precursors 245 are popular 

precursors for radiofluorination and have been applied many times. By varying the chain 

length these precursors can be easily adapted to specific requirements without the need 

to change the labelling procedure significantly. 

Small fluorine-18 labelled alkynes such as 244 have relatively low boiling points, 

which is advantageous for distillation, avoiding time-consuming preparative HPLC 

purification procedures. In addition, they have little influence on the (bio)chemical 

properties of the developed PET tracer. 

Typical reaction temperatures are between 95–110 °C and distillation is quite fast 

(2–5 minutes). The solvent used for trapping the product after distillation may depend 

on the click reaction which is performed afterwards. As a leaving group, predominantly 

the tosylate is used, as it provides in general the best results in a nucleophilic 

substitution.160,178,179 The same applies for the PEG derived precursors 245. In contrast 

to alkyl derived fluorine-18 labelled alkynes, PEG derived fluorine-18 labelled alkynes 

show low volatility which simplifies handling but makes preparative HPLC purification 

necessary in most cases. Their amphiphilicity makes them ideal reactants in the CuAAC 

reaction. Nucleophilic substitution was performed at temperatures between 110 and 140 

°C in MeCN or DMSO for 10 to 15 minutes. High radiochemical yields could be obtained, 

ranging from 58 to 93%.180–182 

 

 Scheme 45 Different types of alkyne precursors. 
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Scheme 46 PET tracers synthesised via click reaction with different fluorine-18 labelled alkynes: (a) 

alkyl-derived building blocks;160,178,179 (b) PEG-derived building blocks.180–182  
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Scheme 46 (Continued) Other fluorine-18 labelled alkynes.183,184 

Other alkyne building blocks have been developed as well. The piperazine based 

building block 248 was chosen because of its high hydrophilicity compared to the alkyl 

derived fluorine-18 labelled alkynes, facilitating the radiofluorination of peptides in 

aqueous conditions. It was synthesised from spiro precursor 247, which could be easily 

separated from the resulting product 248 using reversed phase C-18 or silica gel 

cartridges.183 Building block 249 on the other hand is an amino acid derivative of 

alanine, functionalised with the alkyne moiety at the N-terminus. It is also a convenient 

prosthetic group for radiofluorination of biomolecules based on amino acids. The 

tosylated precursor however showed poor stability during purification, hence the 

chlorinated precursor was used yielding the product in 28 ± 5% (RCY, overall).184 

Scheme 46 shows that a large set of structurally diverse PET tracers can be 

prepared by application of fluorine-18 labelled alkynes in the CuAAC reaction.160,178–184 

Nonetheless, labelling conditions for all click reactions are comparable. The Cu(I) 

catalyst in the 1,3-dipolar cycloaddition, was in every case generated in situ from a Cu(II) 

salt by reduction with sodium ascorbate. Attempts to directly employ the active Cu(I) 

species led to significant precursor degradation and poor radiochemical yields.180 Mostly, 

aqueous solutions of the salts were combined with polar aprotic organic solvents like 

MeCN or DMF containing the radiolabelled building block and/or precursor. 

Temperatures up to 110 °C have been reported, but in general the CuAAC proceeds 

under mild temperatures of 20 to 40 °C. In cases of elevated temperatures, microwave 

heating was shown to be more efficient than conventional heating.180,182 

Purification was usually carried out by (semi-)preparative HPLC. However, Yook 

and co-workers reported a synthesis procedure using an additional, more lipophilic 

alkyne to react with residual precursor and increase its lipophilicity to allow for 

separation of the tracer 252 by a SPE purification procedure.178 
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In summary, many different fluorine-18 labelled alkynes have been successfully 

employed as building blocks in CuAAC reactions for PET tracer syntheses. Due to their 

structural diversity, the use of fluorine-18 labelled alkynes significantly expand the 

spectrum of PET tracers that can be accessed. 

2.2.8 Fluorine-18 labelled alkyl amines 

[18F]Fluoroalkyl amines such as [18F]fluoroethyl amine but also quite complex molecules 

like 267 (Scheme 48) have been used as small versatile building blocks for radio-

fluorination. They can be introduced into the precursor by amide, carbamate and urea 

formation, functional groups that are often present in biomolecules. 

Two general methods for the synthesis of [18F]fluoroalkyl amines have been 

reported: one uses phthalimide protected alkyl amines such as 260 as precursor for 

[18F]fluorination (Scheme 47) whereas the other method employs Boc-protected alkyl 

amines 263 (Scheme 48). 

The method using phthalimide protected amines as starting materials is based on a 

Gabriel reaction and was first published by Tewson and co-workers in 1997. Scheme 47 

shows the 2-step synthesis of [18F]fluoroethyl amine 262. The intermediate phthalimide 

protected aminoethyl tosylate 260 is obtained by reaction of phthalimide with 2-

bromoethanol followed by tosylation. Subsequent radiofluorination at 100 °C for 10 

minutes in MeCN, followed by deprotection with hydrazine, gave [18F]fluoroethyl amine 

262, which was purified by simultaneous distillation into a second reaction vessel. 

Although the labelling strategy itself is quite straightforward, the deprotection step 

proved quite complex and several reaction parameters required careful examination. 

Especially, the presence of water appeared mandatory for the reaction. A complicating 

factor was that the MeCN, which was left behind from the previous reaction step, led to 

azeotropic evaporation of the water. Therefore, the MeCN had to be evaporated until 

dryness before hydrated hydrazine was added. Furthermore, to avoid co-distillation of 

hydrazine, the reaction temperatures could not exceed 75 °C and the reaction time was 

kept between 10 and 15 minutes.185 

 

Scheme 47 Synthesis of [18F]fluoroethylamine via the procedure of Tewson et al.184 

The original procedure of Tewson et al. is still largely employed as it was first 

published.186,187 For example, Huang and co-workers applied it to the synthesis of 
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[18F]fluorooctyl amine. Due to the high boiling point, purification by HPLC was explored 

but neither normal nor reversed phase HPLC gave satisfactory pure product. However, a 

radiochemical yield of 53% (dc, based on radio-HPLC analysis) was observed, which is 

consistent with the yields reported for [18F]fluoroethyl amine 262.188 

The second method to synthesise [18F]fluoroalkyl amines starts from the 

corresponding Boc-protected amino tosylates (Scheme 48). [18F]Fluorination is 

performed in MeCN at 80–120 °C for 7–15 minutes. Radiochemical yields up to 80% 

(analytically determined) have been reported using this strategy. Subsequent de-

protection is performed under acidic conditions at temperatures of 80 to 100 °C. Sulfuric 

acid as well as trifluoroacetic acid have been employed, both resulting in high 

conversions. After neutralisation of the sulfuric acid with phosphate buffer or 

evaporation of trifluoroacetic acid, the [18F]fluoroalkyl amine could be used without 

further purification in the next reaction.189–192 A range of structurally diverse amines 

have been radiofluorinated applying this method (Scheme 48). Apart from primary 

amines with linear alkyl chains, the cyclic primary amine 266 and the more complex 

secondary amine 267 were labelled in this manner with fluorine-18.190,192 

 

Scheme 48 Synthesis of different types of [18F]fluoroalkyl amines via Boc-protected amines.189,191 

In addition to the above discussed more generally established methods to access 

[18F]fluoroalkyl amines, Glaser et al. reported an alternative method. They described the 

reduction of [18F]fluoroethyl azide (188) with elemental copper under acidic conditions 

providing [18F]fluoroethyl amine (262) in radiochemical yields of over 90% (analytically 

determined).193 

[18F]Fluoroalkyl amines can undergo three different types of reactions forming 

either carbamates, amide bonds, or carbamines. Carbamate formation is most widely 

applied (Figure 7).135,187,189,190,194 The radiofluorination reaction was carried out using the 

purified (distilled) fluorine-18 labelled building block, but also successful one-pot three 

step reactions including [18F]fluorination and deprotection of the amine have been 

reported. In most syntheses, the carbamate formation was carried out at room 
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temperature without additives. Antunes and co-workers prepared 268, a PET tracer for 

imaging glucuronidase activity, in an overall radiochemical yield of 13% (dc) including 

deprotection of the product with 2 M sodium hydroxide solution, while trapped on a 

tC18 cartridge.135  

 

Figure 7 [18F]Fluorocarbamates synthesised via reaction with [18F]fluoroalkyl amines.135,187,189,190,194 

Zhang and co-workers used an additional base (triethylamine, TEA) in the synthesis 

of the tumour hypoxia imaging agent 269, which was obtained in a radiochemical yield 

of 48% (dc, last step).187 Sadovski et al. reported that a temperature of 80 °C is optimal to 

obtain 271, a radiotracer for fatty acid amide hydrolase imaging, with a radiochemical 

yield of 17–22% (ndc, overall).189 In all cases, purification of the products was conducted 

by semi-preparative HPLC. 

 

Scheme 49 Synthesis of the butyrylcholinesterase tracer 274.195 

Sawatzky et al. reported the use of [18F]fluoroheptyl amine 265c as building block 

in the multi-step synthesis of the butyrylcholinesterase tracer 274. To activate 

[18F]fluoroheptyl amine 265c, it was first treated with 4-nitrophenyl chloroformate in 
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MeCN under basic conditions resulting in carbamate 273. Subsequently, 273 was 

coupled with the phenol to obtain the butyrylcholinesterase tracer 274 in a 

radiochemical yield of 18–22% (dc) (Scheme 49).196 

For the synthesis of amides from [18F]fluoroalkyl amines, Silvers et al. described the 

use of an acyl chloride precursor, which was reacted with [18F]fluoropropylamine in 

MeCN under basic conditions (TEA) for 14 minutes at room temperature. This provided 

stearoyl-CoA desaturase-1 tracer 275 in an overall radiochemical yield of 21% (dc) 

(Figure 8).192 Huang et al. reported amide formation starting from the carboxylic acid, 

using the coupling reagent 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexa-

fluorophosphate (HBTU) in the presence of DIPEA as base in DMF. The reaction was 

carried out at room temperature and yielded cyclooxygenase-2 (COX-2) inhibitor 276 in 

4% (dc).188 In a third approach for amide bond formation, 9H-β-carboline pentafluoro-

phenyl ester was used as a precursor. One-pot reaction at 80 °C with 2-[18F]fluoroethyl 

azide-derived [18F]fluoroethylamine under basic conditions (TEA) gave GABAA tracer 

277 in 46% decay-corrected radiochemical yield (calculated from 2-[18F]fluoroethyl 

azide).194 

 

Figure 8 [18F]Fluoroamides.187,190,193 

Since 2010 the synthesis of two fluorine-18 labelled urea derivatives has been 

reported. In the procedure described by Majo et al., the potential PET ligand for mTOR 

278 was synthesised from an amine precursor, which was pre-treated with trisphosgene 

and TEA in dichloromethane. The building block [18F]fluoroethyl amine was directly 

distilled into the solution containing the pre-treated precursor. A radiochemical yield of 

15% (dc, overall) was achieved.186 Skaddan and co-workers performed a one-pot 

synthesis, obtaining 279 from the corresponding carbamate precursor by reaction in 

MeCN under basic conditions (DIPEA) at 80 °C in a radiochemical yield of 10% (dc, 

overall) (Figure 9). 



 
Fluorine-18 labelled building blocks for PET tracer synthesis 

83 

 

Figure 9 Fluorine-18 labelled urea derivatives.186,192 

2.2.9 [18F]FDG 

[18F]FDG is the most applied radiopharmaceutical for PET imaging and serves as generic 

tumour tracer. Because of its widespread use and availability in almost every PET centre, 

as well as its favourable pharmacokinetics, several attempts have been made to employ 

[18F]FDG not only as tracer, but also as a building block for other PET tracers. As such, it 

could enable convenient radiolabelling in a one-step synthesis starting from [18F]FDG.196 

As [18F]FDG is readily available, the synthesis of [18F]FDG will not be discussed in this 

review. 

 

Scheme 50 Maillard reaction.197 

When amines are reacted with [18F]FDG, glycosylamines are formed, which are 

biochemically important for many metabolic pathways. The mechanism of the reaction 

between [18F]FDG as building block and an amine, is based on the Maillard reaction 

(Scheme 50). In a Maillard reaction, an amine reacts with the aldehyde of glucose at the 

1-position to form Schiff base 282 after elimination of water. After that, the Schiff base 

can rearrange to the Amadori product 283 leading to ketone formation at the 2-position. 

As [18F]FDG contains a fluorine atom instead of a hydroxyl group at the 2-position, it 

cannot undergo rearrangement to the Amadori product. Thus, in this case the Maillard 
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reaction is blocked at the stage of Schiff base 282, which is also called a quasi-Amadori 

product.197 

An overview of tracers radiolabelled with [18F]FDG is given in Figure 10 and Figure 

11.196–201 The tracers 284–291 were synthesised from the corresponding amine 

precursor whereas tracers 292–296 were synthesised from oxy-amine precursors. The 

[18F]FDG building block was employed either in solution (saline or PBS) or azeotropically 

dried with MeCN prior to use.196,199 

 

Figure 10 PET tracers synthesised from [18F]FDG and amine precursors.196–201 

As solvent, the use of methanol, ethanol, DMSO and mixtures of them with water 

have been described. Furthermore, acetic acid was present in all reactions mentioned. 

Reaction temperatures varied between 60–99 °C with reaction times varying between 

10–120 minutes. 

In the reactions with [18F]FDG as labelling reagent, aniline can serve as catalyst 

forming [18F]FDG–aniline as an intermediate. Flavell and co-workers could shorten 

reaction times from 30 to 1 minute using aniline, whereas Baranwal et al. were able to 
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perform the reactions at room temperature (instead of 99 °C) when aniline was 

present.196,197 

Usually the tracers synthesised from [18F]FDG needed purification and a range of 

methods to achieve this have been applied. However, it is noteworthy that Al Jammaz 

and co-workers obtained the PET myocardial perfusion imaging agent 293 in a 

radiochemical yield of 97% by just simply passing the reaction mixture through a 

membrane filter, resulting in >98% radiochemical purity.201 The in vitro stability of the 

glycosyl amine tracers are in general high.199,200 However, at low pH, increased 

decomposition of the [18F]FDG amines was observed whereas the [18F]FDG oximes were 

stable towards hydrolysis under these conditions. Flavell and co-workers took advantage 

of this characteristic and designed acid-labile pro-drug tracers 284–286, 288 and 290 

for imaging acidic tumour microenvironments.196 

 

Figure 11 PET tracers synthesised from [18F]FDG and oxy-amine precursors.196–201 
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In summary, because of its commercial availability, [18F]FDG is a very easily 

accessible building block and allows mild radiofluorination. Valuable PET tracers have 

been obtained using [18F]FDG. Though, due to its size and hydrophilicity it can have a 

significant influence on the pharmacokinetics and the targeting of the resulting PET 

tracer.  

2.2.10 5-[18F]Fluoro-5-deoxyribose 

Initially developed as PET tracer for tumour imaging,202,203 5-[18F]fluoro-5-deoxyribose 

has also found application as a building block. Besides in peptide radiolabelling,204 it has 

been used to prepare tetrazine 301, a fluorine-18 labelled compound for pre-targeted 

PET imaging. The synthesis of the fluorinated tetrazine from an 18F-building block was 

necessary, because tetrazines are unstable under commonly used direct radio-

fluorination conditions. 5-[18F]Fluoro-5-deoxyribose can be used under mild conditions 

and in addition, the 5-[18F]fluoro-5-deoxyribose moiety contributes positively to the 

overall hydrophilicity of the PET tracer, reducing unspecific binding.  

5-[18F]Fluoro-5-deoxyribose 299 could be obtained in a two-step procedure 

(Scheme 51). First, the protected tosylate precursor 297 was radiofluorinated by 

nucleophilic substitution in MeCN at 108 °C. Intermediate 298 was purified by 

semipreparative HPLC and then deprotected with hydrochloric acid. After neutralisation, 

the obtained 5-[18F]fluoro-5-deoxyribose 299 was used without further purification. 

 

Scheme 51 Synthesis of 5-[18F]fluoro-5-deoxyribose 299. 

Another elegant way to synthesise 5-[18F]fluoro-5-deoxyribose was reported by 

Onega and co-workers. They converted S-adenosyl-L-methionine (SAM) and [18F]fluoride 

in a two-step enzymatic reaction using fluorinase and adenosine hydrolase to access the 

product. Radiochemical yields of 75–98% (determined by radio-HPLC) were achieved 

and the overall synthesis time was 100–120 minutes.206 

Furthermore, 5-[18F]fluoro-5-deoxyribose 299 was conjugated with the amino-oxy 

functionalised tetrazine 300 by oxime ether formation (Scheme 52). The reaction was 

carried out in anilinium acetate buffer (pH 4.6). After 10 minutes at room temperature, 

product 301 was purified by semi-preparative HPLC and obtained in an overall 

radiochemical yield of 50.5 ± 1.7% (dc).205 



 
Fluorine-18 labelled building blocks for PET tracer synthesis 

87 

In conclusion, the amino-oxy functionalised tetrazine 300 could be labelled fast and 

in high overall yields, proving the suitability of 5-[18F]fluoro-5-deoxyribose 299 as 

building block for PET tracer synthesis. In its function as building block, 5-[18F]fluoro-5-

deoxyribose may serve as a valuable alternative to [18F]FDG. 

 

Scheme 52 Synthesis of compound 301 by reaction of building block 5-[18F]fluoro-5-deoxyribose 299 

with tetrazine 300.205 

2.2.11 2-Deoxy-2-[18F]fluoroarabinofuranose 

Derivatives of 2’-[18F]fluoro-2’-deoxy-1-β-D-arabinofurano-syluracil ([18F]FXAU) 307 

can act as potential PET tracers to image the expression of the herpes simplex virus type-

1 thymidine kinase (Scheme 53).  

 

Scheme 53 Synthesis of [18F]FXAU (307).207,209 

As direct radiofluorination at the 2’-position of the sugar moiety provides extremely 

low yields (<1%), and therefore does not allow for routine clinical production, many 

efforts have been made to develop a high-yielding multi-step synthesis based on the 

building block 2-deoxy-2-[18F]fluoroarabinofuranose 303. 
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Formation of the building block [18F]2-deoxy-2-fluoroarabinofuranose 303 is in all 

reported procedures based on the same strategy. In that strategy, the benzyl protected 

ribose triflate 302 is treated during 20 to 30min with dried [18F]fluoride in MeCN at 80–

90 °C. Alauddin and co-workers reported radiochemical yields of 58–68% for 303 and a 

radiochemical purity of 490% after passing the reaction mixture over a silica Sep-Pak 

cartridge to remove unreacted [18F]fluoride.207 However, depending on the follow-up 

chemistry, purification of 303 was not always required. Manual as well as automated 

synthesis procedures on conventional synthesis units and microfluidic devices have been 

performed.208,209 

Two different synthesis procedures for [18F]FXAU 307 starting from building block 

[18F]2-deoxy-2-fluoroarabinofuranose 303 have been developed (Scheme 53). The first 

method, reported by Alauddin and co-workers in 2002, includes the formation of an α-

bromo derivative 304 to promote β-selective coupling to the uracil moiety. For the 

conversion of the 1-benzoxy group of 303 to the corresponding bromide 304, hydrogen 

bromide in acetic acid is used. However, the highly corrosive hydrogen bromide makes 

this step challenging to automate. The building block was subsequently coupled to a silyl 

precursor 305 in a non-polar solvent which induced product formation in a favourable 

anomeric ratio of α : β = 1 : 3–1 : 9.207,210 The reaction time of 60 minutes was rather long, 

and led to low overall yields.211 

Although this method is described as very reliable, major disadvantages such as the 

use of corrosive hydrogen bromide make it not amenable for clinical production. 

Therefore, an alternative method suitable for automated synthesis of [18F]FXAU has been 

developed, which employs trimethylsilyl trifluoromethanesulfonate (TMSOTf) as Friedel 

Crafts catalyst in the coupling reaction that enables direct coupling between building 

block 303 and silyl precursor 305. Building block 303 could be employed without 

purification and added to the in situ generated 305. The reaction optimally performs at 

85 °C. No coupling could be observed at lower temperatures while higher temperatures 

led to decomposition.209 

In a final step, 306 was deprotected with potassium methoxide in methanol. The 

product was obtained after neutralisation with HCl and subsequent purification by semi-

preparative HPLC. For the 3-step reaction route, radiochemical yields of 10–12% (dc) 

have been reported, with synthesis times of 114–150 min. The relatively low yields can 

be attributed to poor α/β anomer selectivity (6 : 4 instead of 1 : 4).208,209,212 Furthermore, 

the product has a poor specific activity of 5 GBq/µmol, probably caused by the excess of 

TMSOTf.208 

To further improve the synthesis route, Chen et al. have investigated the influence 

of microwave heating and Lewis acid catalysis on the coupling reaction. Microwave 

heating can have a positive influence on the coupling reaction by reducing the reaction 
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time from 1 hour to 10 minutes, delivering the product in a radiochemical yield of 20% 

(dc). However, currently this microwave approach is only suitable for manual 

production.213 Application of the Lewis acid catalyst SnCl4 shortens the reaction time of 

the coupling reaction to 15 minutes while it is compatible with automation. Though, 

neither microwave heating nor the use of SnCl4 influenced the anomeric ratio 

positively.211 

In conclusion, synthesis of the building block 2-deoxy-2-[18F]fluoroarabinofuranose 

is straightforward, but the anomeric C-1 atom makes the follow-up chemistry 

challenging. So far, the scope of the building block is limited to the synthesis of 2’-

[18F]fluoro-2’-deoxy-1-β-D-arabinofuranosyl-uracil and -thymidine derivatives. 

2.2.12 2’-Deoxy-2’-[18F]fluorothymidine 

2’-Deoxy-2’-[18F]fluorothymidine ([18F]FLT) has been applied only once as a 

building block. Carroll and co-workers reported on the synthesis of a prodrug-like tracer 

in 2014, PC-[18F]FLT 310a, for H2O2 detection and tumour imaging. Firstly, [18F]FLT was 

synthesised according to an established procedure. Thereafter it was reacted with 

imidazole ester precursor 309 (Scheme 54) in the presence of dimethylaminopyridine 

(DMAP) and TEA. After deprotection with citric acid, the product was purified by semi-

preparative HPLC to afford PC-[18F]FLT 310a and CC-[18F]FLT 310b in a radiochemical 

yield of 41% and 44%, respectively, starting from [18F]FLT.214 

 

Scheme 54 Production of PC-[18F]FLT 310a and CC-[18F]FLT 310b with [18F]FLT.214 

2.2.13 4-(2-[18F]Fluoroethoxy)-3-methoxybenzaldehyde 

4-(2-[18F]Fluoroethoxy)-3-methoxybenzaldehyde 312 has been applied as a 

building block in the synthesis of 1-(4-[18F]fluoroethyl)-7-(4’-methyl)curcumin 314, a 

tracer for β-amyloid plaque imaging. Compared to direct labelling, the 2-step synthesis 

shown in Scheme 55 provided higher yields and higher specific activities. 
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Scheme 55 Synthesis of 1-(4-[18F]fluoroethyl)-7-(4’-methyl)curcumin.215 

4-(2-[18F]Fluoroethoxy)-3-methoxybenzaldehyde 312 was synthesised from its 

nosylate precursor 311. [18F]Fluorination was performed with n-Bu4N[18F]F- in MeCN at 

120 °C and resulted in radiochemical yields of over 70% (based on radio-TLC analysis). 

In the follow-up aldol condensation, 312 was reacted with a 5-hydroxy-1-phenyl-hexa-

1,4-dien-3-one (313) in the presence of B2O3, (n-BuO)3B and piperidine at 120 °C. After 

treatment with hydrochloric acid, the final product 314 was purified by semipreparative 

HPLC and obtained in a radiochemical yield of 15–25% with a specific activity of 37.6 

GBq/µmol.215 

2.2.14 Fluorine-18 labelled phosphines 

Pretze et al. explored the synthesis of fluorine-18 labelled triarylphosphine 316 and its 

performance in a traceless Staudinger ligation. In the traceless Staudinger ligation, 

triarylphosphines carrying an ester group at the ortho position of the phosphorus atom 

can undergo a reaction with an azide resulting in amide bond formation. The ligation 

usually proceeds under mild conditions, however with slower reaction kinetics than the 

CuAAC reaction and it suffers from the disadvantage of oxidation of the phosphine 

precursor. Nevertheless, it provides a ‘‘clean’’ alternative to the CuAAC reaction and 

complex biomolecules have been radiolabelled using this strategy.216 

Fluorine-18 labelled triarylphosphine 316 was prepared by reaction of [18F]tetra-

butylammonium fluoride ([18F]TBAF) with the tosylated precursor 315 (Scheme 56). 

The choice of solvent to obtain 316 proved to be crucial: whereas no reaction was 

observed in DMF or DMSO, a mixture of MeCN and tert-butanol afforded the desired 

product in 65% (dc) radiochemical yield. The traceless Staudinger ligation was carried 

out without additional intermediate purification. Water and the azide were directly 

added and the reaction was stirred at different temperatures. Low temperatures 

required longer reaction times compared to high temperatures, but provided 317–320 

in similar overall yields of 31–35%. The more complex biotin derivative 320 however 
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required a longer reaction time at medium temperatures (60 °C) and resulted in lower 

yields compared to the other compounds.217 

 

Scheme 56 Synthesis of fluorine-18 labelled phosphine building block 316 and subsequent traceless 

Staudinger ligation.217 

2.2.15 [18F]4-Nitrophenyl 2-fluoropropionate ([18F]NFP) 

[18F]4-Nitrophenyl 2-fluoropropionate ([18F]NFP, 325) is commonly used for fluorine-18 

labelling of amino acids, peptides and other amine derivatives. It can be coupled under 

very mild reaction conditions with the amine functionality of an amino acid, resulting in 

amide bond formation. 

[18F]NFP can be synthesised via a one-pot three-step procedure (Scheme 57). Via 

halogen exchange of ethyl-2-bromopropionate 321 with dried [18F]fluoride, ethyl-2-

[18F]fluoropropanoate 322 was obtained, which was subsequently saponified under 

basic conditions. Usually an aqueous solution of potassium hydroxide is used, however 

since the subsequent step requires anhydrous conditions, Li et al. have used TBAOH 

which can be employed in a smaller volume, thereby shortening the time-consuming 

drying procedure. In the third step, bis-4-nitrophenyl carbonate 324 is added, followed 

by semi-preparative HPLC purification. As the [18F]NFP needs to be absolutely free from 

water for subsequent coupling to an amine, it was transferred via a cartridge procedure 
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to a volatile organic solvent (e.g. ether) and then evaporated to dryness. Overall 

radiochemical yields of 20–50% (ndc) are reported.73,218  

 

Scheme 57 One-pot three-step synthesis of [18F]NFP.73 

Reaction of 325 with amino precursors proceeds in general under mild conditions 

(room temperature to 60 °C) in short reaction times with good radiochemical yields. 

Scheme 58 summarises the molecules labelled with [18F]NFP.73,218–220 

 

Scheme 58 PET tracer synthesis by coupling to [18F]4-nitrophenyl 2-fluoropropionate 325.73,218–220 

In addition to two amines, also the two amino acids, L-methionine 329 and L-

arginine 327, have been radiofluorinated using this building block. Whereas Gao and co-

workers described the use of the protected amino acid arginine ethyl ester dihydro-
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chloride as precursor, Hu et al. state fast and efficient coupling of [18F]NFP to un-

protected methionine. Overall radiochemical yields are comparable and approximately 

15% (ndc) with reaction times of 120 minutes.218,220 

To summarise, [18F]NFP offers fast, mild and simple radiofluorination of amines and 

amino acids. The only challenge in the application of [18F]NFP is the complex and time-

consuming three-step one-pot synthetic procedure of the building block itself. 

2.2.16 Fluorine-18 labelled trans-cyclooctenes 

In [4+2] inverse electron demand Diels-Alder cycloadditions, trans-cyclooctenes (TCO) 

and tetrazines (Tz) react very fast and selectively with each other under mild reaction 

conditions. Keliher et al. and Reiner et al. used this strategy to radiolabel poly-ADP-

ribose-polymerase 1 inhibitor AZD2281 332 (Scheme 59). Compared to native labelling, 

which requires multiple steps including intermediate purifications, higher yields and 

reduced reaction times have been reported using this strategy. 

 

Scheme 59 Synthesis of the fluorine-18 labelled TCO 331 and [4+2]cycloaddition with Tz 

precursor.222,223 

As tetrazines are unstable under radiofluorination conditions,221 fluorine-18 was 

introduced into the trans-cyclooctene reactant 331. This building block was synthesised 

from its tosyl precursor in a nucleophilic substitution reaction and obtained after HPLC 

purification in a radiochemical yield of 44.7 ± 7.8% (dc) in 40 minutes from the start of 

drying the [18F]fluoride. The tetrazine moiety was integrated into the structure of the 

AZD2281 derivative 332 by attaching it to the piperazine unit. Reaction between the 

tetrazine and 331 was very fast (3 min at room temperature). HPLC purification afforded 

the product in a radiochemical yield of 59.6 ± 5.0% (dc).222 To allow routine production, 

an alternative way of purification was developed: excess amount of precursor was 

extracted by using magnetic beads functionalised with trans-cyclooctene. The radio-

chemical yield was improved to 92.1 ± 0.4% (dc).223 
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In conclusion, as the [4+2] cycloaddition proceeds very fast under mild reaction 

conditions with high selectivity, it is a very interesting alternative to the popular CuAAC 

reaction for radiofluorination of biomolecules. 

2.2.17 5-(1,3-Dioxolan-2-yl)-2-(2-(2-(2-[18F]fluoroethoxy)ethoxy)ethoxy)-

pyridine 

Carberry and co-workers introduced a novel fluorine-18 labelled building block, 5-(1,3-

dioxolan-2-yl)-2-(2-(2-(2-[18F]fluoroethoxy)ethoxy)ethoxy)pyridine 334, which can 

react after hydrolysis with aminooxy groups, resulting in oxime formation (Scheme 

60).224  

 

Scheme 60 Radiosynthesis and coupling reaction of building block 334.224 

Building block 334 was prepared in a 71 ± 2% radiochemical yield via nucleophilic 

substitution of the corresponding tosylate 333 using [18F][K⊂K2.2.2]F in MeCN at 110 

°C, followed by purification using solid-phase extraction. Next, building block 334 was 

converted in situ to the corresponding aldehyde under the same acidic conditions which 

are used in the oxime formation. Attempts to perform this step prior to radiofluorination 

were unsuccessful, because the presence of the free aldehyde led to formation of various 

side products under the radiolabelling conditions. 

Two model compounds 335a and b, both potential tracers for β-amyloid plaque 

imaging, were synthesised by Carberry et al. using building block 334 and were obtained 

in comparable overall radiochemical yields (around 40% (dc)) in 100 minutes (Scheme 

60).224 Successful labelling of small molecules using this building block has been 

demonstrated. The utility of this prosthetic group in radiofluorination of more complex 

biomolecules such as peptides and proteins has yet to be proven. 
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2.2.18 [18F]Fluorobutyl ethacrynic amide ([18F]FBuEA) 

[18F]FBuEA 337 was used in the synthesis of the glutathione (GSH) conjugate 

[18F]FBuEA-GSH 338, a potential imaging agent for brain tumours targeting the lipocalin-

type prostaglandin D synthase.225 

[18F]FBuEA was synthesised from the corresponding tosylate precursor 336 in a 

nucleophilic substitution reaction and obtained after Boc deprotection and HPLC 

purification in 20–30% radiochemical yield in 60 minutes reaction time (Scheme 61).  

 

Scheme 61 Radiosynthesis of [18F]FBuEA 337.226 

 Coupling of [18F]FBuEA with glutathione was accomplished in aqueous medium at 

pH 8.2, followed by semi-preparative HPLC purification, providing the racemic product 

in an overall radiochemical yield of 5% (dc) and an overall synthesis time of 2 hours 

(including the synthesis of the building block) (Scheme 62).226 

 

Scheme 62 Conjugation of [18F]FBuEA with glutathione.226 

2.2.19 New aliphatic building blocks and coupling methods with potential for 

PET tracer synthesis 

In the following sections, new radiolabelled aliphatic building blocks as well as novel 

conjugation methods with aliphatic building blocks, which have not been applied yet in 

PET tracer synthesis, will be summarised. 
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2.2.19.1 N-(2-[18F]Fluoroethyl)-N-methylamine 

Hoareau et al. reported in 2014 on the one-pot two-step synthesis of N-(2-[18F]fluoro-

ethyl)-N-methylamine 340 as potential building block for PET tracer synthesis (Scheme 

63). 

 

Scheme 63 Synthesis and reaction of N-(2-[18F]fluoroethyl)-N-methylamine.227 

Precursor 339 was radiofluorinated in MeCN at 110 °C within 10 minutes. Next, 

trifluoroacetic acid (TFA) was added and the reaction mixture was heated again at 110 

°C for 10 min. After evaporation of TFA, N-(2-[18F]fluoroethyl)-N-methylamine 340 was 

obtained in 81% radiochemical yield and directly employed in the coupling reactions 

without further purification. 

For the subsequent conversion to amides 341a and 341b, two methods were 

studied: method A employed benzyl chloride and hydrocinnamoyl chloride, respectively, 

in THF in presence of DIPEA as base and in method B, the corresponding carboxylic acids 

were reacted with N-(2-[18F]fluoroethyl)-N-methylamine 340 in presence of DIPEA and 

the coupling reagent 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridi-

nium 3-oxide hexafluorophosphate (HATU). Radio-TLC and HPLC analyses showed 

higher conversion using method B for both products. The yield of amides 341a and 341b 

resulting from method B were 4 and 17% in a synthesis time of 93 minutes and 134 

minutes, respectively.227 

2.2.19.2 3-[18F]Fluoropropanesulfonyl chloride 

In 2009 Li et al. introduced 3-[18F]fluoropropanesulfonyl chloride 344, a potential 

building block for PET tracer synthesis via sulfonamide formation.228 An optimised 

synthesis procedure of building block 344 and its reaction with various amines was 

reported by Löser et al. in 2013. First, [18F]fluoride was introduced by nucleophilic 

substitution, providing thiocyanate 343 in 75–85% yield from the nosylate precursor. 

Compound 343 was used without intermediate purification and converted to sulfonyl 

chloride 344 by repetitive addition of a saturated solution of chlorine in water over a 

C18 SPE cartridge containing 343. 3-[18F]Fluoropropanesulfonyl chloride 344 was 
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obtained in 40–45% decay corrected radiochemical yield in a synthesis time of 70 

minutes (Scheme 64). 

 

Scheme 64 Two-step synthesis 3-[18F]fluoropropanesulfonyl chloride.229 

Different amines were subjected to reaction with 3-[18F]fluoropropanesulfonyl 

chloride 344 to assess the usability of the building block in PET tracer synthesis (Scheme 

65). Aliphatic sulfonamide 345 and 346 were formed in 2–3 minutes with high 

radiochemical yields of 77 to 89% (determined by radio-TLC). Addition of bases (TEA or 

DMAP) did not improve the yield. However, for the aniline derivatives 347, only low 

yields (<10%) were observed in absence of additive. Addition of TEA or DMAP improved 

the conversion of aniline and 4-fluoroaniline and provided radiochemical yields of 50–

65% (analytically determined). For the poorly nucleophilic 4-nitroaniline, only addition 

of potassium trimethylsilanolate led to formation of satisfying amounts of product (RCY 

= 45%, analytically determined).229 

 

Scheme 65 Reaction of 3-[18F]fluoropropanesulphonyl chloride with different amines.229 

2.2.19.3 2-[18F]Fluoroethanol and 3-[18F]fluoropropanol 

As an alternative strategy to fluoroalkylation using [18F]fluoroalkyl halides and 

sulfonates (see Sections 2.2.1–2.2.5), 2-[18F]fluoroethanol 119 and 3-[18F]fluoropropanol 

have been used to synthesise [18F]fluoroalkyl aryl esters and ethers. 2-[18F]Fluoro-

ethanol 119 was synthesised in a one-step reaction via nucleophilic substitution of 

ethylene carbonate 348 (Scheme 66). The reaction was carried out at 165 °C in 

diethylene glycol with dry [18F]TBAF as fluoride source. After 20 minutes, 2-[18F]fluoro-

ethanol (b.p. 103.5 °C) was co-distilled with THF and trapped into a second vial 
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containing THF in a decay-corrected radiochemical yield of 88.6 ± 2.0%. The total 

synthesis time including drying of [18F]fluoride was about 60 minutes. 

The same procedure was applied to the synthesis of 3-[18F]fluoropropanol resulting 

in a decay-corrected radiochemical yield of 65.6 ± 10.2%. The lower yield in the latter 

case was attributed to the higher boiling point of 3-[18F]fluoropropanol (127.8 °C) and 

the resulting reduced distillation efficiency. 

 

Scheme 66 2-[18F]Fluoroethanol as building block in the synthesis of 2-[18F]fluoroethyl aryl esters and 

ethers.230 

2-[18F]Fluoroethanol was reacted in two model reactions to prove its usability in 

the formation of [18F]fluoroalkyl aryl esters and ethers (Scheme 66). Under non-

optimised reaction conditions, 2-[18F]fluoroethyl 4-fluorobenzoate 349 and 1-(2-

[18F]fluoroethoxy)-4-nitrobenzene 350 were synthesised with decay-corrected radio-

chemical yields of 36.1 ± 5.4% and 27.7 ± 10.7%, respectively. In the synthesis of 350, 

the strong base tert-butoxide was employed to increase the reactivity of the building 

block in the nucleophilic substitution by generating 2-[18F]fluoroethoxide. 

Due to the slightly higher nucleophilicity of 3-[18F]fluoropropanol compared to 

[18F]fluoroethanol, similar performance of 3-[18F]fluoropropanol was expected. But 

formation of 3-[18F]fluoropropyl aryl esters and ethers has not been investigated.230 

2.2.19.4 Pd(0)-mediated C-[18F]fluoromethylation 

To expand the toolbox of radiofluorination methods, Pd(0)-mediated C-[18F]fluoro-

methylation of pinacolborane substituted arenes has been explored. This method offers 

the possibility not only to introduce the [18F]fluoromethyl group via N-,O-, S- or P-

alkylation but also to allow for C–C bond formation.  
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[18F]Fluoromethyl iodide 10 as well as [18F]fluoromethyl bromide 2 have been 

investigated as building blocks in a coupling reaction with the pinacolborane-substituted 

benzoate 351 (Scheme 67).  

 

Scheme 67 Pd(0)-Mediated C-[18F]fluoromethylation.242 

Initial experiments with [18F]fluoromethyl iodide 10 in DMF, using the catalyst 

system [Pd2(dba)3]/P(o-tolyl)3 and potassium carbonate as base, provided [18F]fluoro-

methylated benzoate 352 in a radiochemical yield of 23% (based on radio-HPLC 

analysis). Unfortunately, decomposition of building block [18F]fluoromethyl iodide 10 

was observed under the coupling conditions and attempts to reduce decomposition of 

the precursor failed. When using [18F]fluoromethyl bromide 2, the yield of 352 could be 

increased up to 86% (based on radio-HPLC analysis) under optimised conditions. Due to 

the lower reactivity of the bromide 2 compared to the iodide 10, higher reaction 

temperatures of 120 °C were required and the solvent system 1,3-dimethyltetra-

hydropyrimidin-2(1H)-one (DMPU, N,N’-dimethyl propylene urea)/water (9 : 1) was 

found to be superior to DMF or N-methyl-2-pyrrolidone (NMP). Addition of small 

amounts of water suppressed side product formation, providing product 352 in 66% 

decay-corrected radiochemical yield in a total synthesis time of 40 minutes starting from 

[18F]fluoromethyl bromide.231 

2.3 Fluorine-18 labelled aromatic building blocks 

Since 2010 a wide variety of fluorine-18 labelled aromatic building blocks have been 

developed and applied to synthesise PET tracers. These building blocks are mostly used 

for PET tracers which cannot be prepared by direct radiofluorination of the 

corresponding precursors, since sufficient electron withdrawing functionalities at the 

ortho or para position to the site of fluorination are absent, or because the precursor or 

product is unstable under the relatively harsh radiolabelling reaction conditions. 

In most cases, fluorine-18 labelled aromatic building blocks are synthesised by 

introduction of [18F]fluoride on phenyl precursors containing one good leaving group  

(–NO2 or –NMe3+) and at least one strong electron withdrawing functional group 

(aldehyde, ester, cyanide) positioned ortho or para from each other. Due to the electron 

withdrawing functional group, the benzene ring is electron deficient, allowing 

nucleophilic aromatic substitution with [18F]fluoride, exchanging the leaving group for 
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fluorine-18. After radiofluorination, in the follow-up chemistry, the functional group is 

either (1) reacted directly in a second reaction with a precursor towards the desired PET 

tracer or (2) further transformed to a more useful functional group and then reacted 

with a precursor towards the desired PET tracer. 

2.3.1 [18F]Fluorobenzaldehydes 

The aldehyde functionality is a versatile functional group; it is therefore not surprising 

that [18F]fluorobenzaldehydes are often reported and used in a wide variety of sub-

sequent chemical reactions (Scheme 68). 

 

Scheme 68 Possible applications of [18F]fluorobenzaldehydes. 

Of these reactions, reductive amination is the most commonly used, and will be 

discussed in Section 2.3.1.2. Furthermore, [18F]fluorobenzaldehydes are used in the 

condensation with various types of amines towards imines, oximes and hydrazones, 

which will be discussed in Section 2.3.1.3, 2.3.1.4 and 2.3.1.5. A well known reaction for 

aldehydes is the aldol condensation, which has been used in the synthesis of PET tracers 

with the dibenzalacetone core structure, as can be seen in Section 2.3.1.6. Finally, a very 

innovative application of [18F]fluorobenzaldehydes is discussed in Section 2.3.1.7, being 

the use as a reagent in multicomponent reactions, opening up the synthesis of a wide 

diversity of potential PET tracers. 

2.3.1.1 Synthesis of [18F]benzaldehydes 

Because the aldehyde functional group is strongly electron withdrawing, 4-

[18F]fluorobenzaldehydes and 2-[18F]fluorobenzaldehydes can be synthesised in one 

reaction step by nucleophilic aromatic substitution with [18F]fluoride of nitro- or 

trimethylammonium triflate benzaldehydes. Kügler et al. and Lemaire et al. compared 

the conversions towards various 4-[18F]fluorobenzaldehydes (Scheme 69) and 2-

[18F]fluorobenzaldehydes.232,233 Comparable conversions were observed for both leaving 
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groups, however reactions were in general faster for the trimethylammonium triflate 

containing precursors (5 minutes versus 15 minutes respectively). 

 

Scheme 69 Synthesis of 2- and 4-[18F]fluorobenzaldehydes.232,233 

Furthermore, in the case of the trimethylammonium precursors, purification of the 

4-[18F]fluorobenzaldehydes from the trimethyl ammonium precursors can be carried out 

via a straightforward C18 SPE procedure. Apolar 4-[18F]fluorobenzaldehyde is retained 

on the C18 cartridge, while the polar, ionic, trimethylammonium precursor can be 

removed by washing the cartridge with aqueous media. 

In case of the nitro precursors, which are also apolar molecules, such a simple 

purification procedure to obtain 4-[18F]fluorobenzaldehydes is not possible. As a result, 

trimethylammonium precursors are currently preferred for the synthesis of 4-

[18F]fluorobenzaldehyde. 
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When a nitrogen atom is included in the aromatic ring, directly next to the fluorine-

18 labelling position (thus being a pyridine derivative), the electron withdrawing effect 

of the nitrogen atom highly activates the labelling position, making it possible to obtain 

high conversions even with less reactive leaving groups. As shown by Kügler et al. 

(Scheme 70), a radiochemical yield of 80 ± 6% (analytically determined) was obtained 

when labelling the commercially available precursor 6-chloronicotinaldehyde 355.232 

 

Scheme 70 Synthesis of 6-[18F]fluoronicotinaldehyde.232 

Labelling the 3-position of benzaldehyde towards 3-[18F]fluorobenzaldehyde is 

more challenging because this position is relatively electron rich compared to the 2- and 

4-position. Attempts to prepare 3-[18F]fluorobenzaldehyde from nitro- or trimethyl-

ammonium benzaldehyde precursors resulted in very low radiochemical yields.234–236 

 

Scheme 71 Novel fluorine-18 labelling methods for the synthesis of 3-[18F]fluorobenzaldehydes.7,17,23,24 

For the synthesis of 3-[18F]fluorobenzaldehyde in higher radiochemical yields, 

various new radiofluorination techniques have recently been investigated (Scheme 

71).7,17,23,24 These methods enable the formation of 3-[18F]fluorobenzaldehyde in 

moderate to good radiochemical yields (analytically determined) and thereby open up 

the possibility to synthesise PET tracers based on this building block. Applications of this 
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building block have not been published yet, except in the synthesis of Lapatinib, which 

will be discussed in Section 2.3.2.4.3 (Application of [18F]fluorobenzyl halides in 

alkylation of phosphines and benzyl alcohols). 

2.3.1.2 Application of [18F]fluorobenzaldehydes in reductive aminations 

[18F]fluorobenzaldehydes are predominantly used in reductive amination reactions, of 

which the first examples were published in 1990.237 Scheme 72 summarises the small 

molecule PET tracers that have recently been prepared by reductive amination.232,228–245 

Except for tracer 365, in which sodium borohydride was used as a reductant at 60 °C and 

tracers 366a and 366b, in which sodium triacetoxyborohydride was used as a reductant 

at room temperature, all tracers were produced using sodium cyanoborohydride as the 

reductant at temperatures >100 °C. In general, the overall radiochemical yields, starting 

from [18F]fluoride, were reasonable, in the range of 20–40% decay corrected with 

synthesis times of 80–150 minutes. 

Intermediate purification of [18F]fluorobenzaldehydes as building blocks by SPE or 

HPLC could be omitted in some cases, resulting in a faster and easier to automate overall 

synthetic procedure. For example, in the case of the benzodioxin piperazines 360a–d 

and N-benzyl-phenethylamines 367a–e, one-pot [18F]benzaldehyde production and 

subsequent reductive amination was possible.232,245 

Another example of a successful two-step reaction without intermediate purify-

cation is the synthesis of the delta opioid agonist [18F]AZ12439516 364. In this case, 

both the [18F]benzaldehyde synthesis and subsequent reductive amination could be 

performed using a microfluidic apparatus.239 Although a significant reduction of overall 

reaction time can be achieved with the one-pot procedure, it does not always yield 

satisfactory results. The final purification of the PET tracer can be challenging or even 

prove to be impossible, due to the formation of significantly more side products. 

In a recent publication describing the reductive amination approach using 

[18F]fluorobenzaldehyde, the synthesis of fluorine-18 labelled histone deacetylase class-I 

tracer derivatives of [11C]Martinostat can be found. Developed originally as a carbon-11 

tracer that showed excellent imaging results in preclinical studies, Strebl et al. developed 

a fluorine-18 derivative, which would allow multicentre clinical studies and ultimately 

commercialisation of the PET tracer. 
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Scheme 72 Recently produced tracers using reductive amination with [18F]fluorobenzaldehydes. 

aIncluding deprotection after reductive amination. bIncluding ring closure after reductive amination. cIn 

the synthesis of this PET tracer, the dibenzaldehyde 2-[18F]fluoroterephthalaldehyde was used, leading 

to double reductive amination.232,238–245 
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Scheme 73 Synthesis of aromatic fluorine-18 labelled Martinostat derivatives.246  



 
Chapter 2 

106 

Initial approaches to create a fluorine-18 derivative aimed to replace the N-methyl 

functionality with a [18F]fluoroethyl group showed that the [18F]fluoroethyl group led to 

a significant decrease in target affinity and selectivity.246 As an alternative, Strebl et al. 

published a fluorine-18 labelled Martinostat derivative where the aromatic ring was 

substituted with fluorine-18.246 Since the aromatic ring does not contain an electron 

withdrawing group that allows for direct nucleophilic aromatic substitution, a building 

block approach was used, starting from [18F]fluorobenzaldehyde 354l or 354m, 

followed by a multi-step procedure including a reductive amination for further 

functionalisation (Scheme 73). As the hydroxamatemoiety is incompatible with radio-

fluorination conditions, two approaches were examined: (a) protecting the hydroxamic 

acid group with 2,2-diethoxypropane to form aprotic 5,5-dimethyl-1,4,2-dioxazole; (b) 

starting from the methyl ester which is converted in the last step to the hydroxamate 

using hydroxylamine. 

Both approaches led to the desired fluorine-18 labelled Martinostat derivative. 

Although the overall radiochemical yields were low, due to the multistep procedure 

requiring two HPLC purifications and multiple solid phase extractions, the radiochemical 

yields were sufficient for the preclinical evaluation of these compounds.  

2.3.1.3 Application of [18F]fluorobenzaldehydes in imine formation 

[18F]fluorobenzaldehydes are also reacted with amines to form imines. This reaction is 

however not commonly used as imines are generally unstable and can be easily 

hydrolysed. One example of a PET tracer consisting of an imine formed via reaction of 

[18F]fluorobenzaldehyde with an amine is compound 377 (Scheme 74).44 

 

Scheme 74 Imine formation with 4-[18F]fluorobenzaldehyde as a method to label glucosamine.44 

The main advantage of this approach over the use of other fluorine-18 labelled 

building blocks to label glucosamine 376, is that the alcohol groups do not require 

protection due to the high selectivity of [18F]benzaldehydes for reaction with amines. 
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2.3.1.4 Application of [18F]fluorobenzaldehydes in oxime formation 

Oximes formed by condensation of [18F]fluorobenzaldehydes with hydroxamines are 

generally very stable. It is therefore not surprising that the reaction of [18F]fluoro-

benzaldehyde with aminooxy-functionalised peptides is a commonly applied method to 

label peptides.247 For the synthesis of low molecular weight PET tracers this method is 

rarely used, as only one report has been published recently.248 

Abdel-Jalil et al. reported on the synthesis of a series of hypoxia tracers 379a–c by 

reacting [18F]4-fluorobenzaldehyde 354a with aminoxy-functionalised precursors 

378a–c (Scheme 75).248 These precursors are synthesised in only 3 steps and the 

subsequent oxime formation proceeds in high conversions (RCY >70% da) in 30 minutes 

reaction time. Since high yields and short synthesis times in general are ideal for the 

synthesis of PET tracers, this oxime formation using [18F]4-fluorobenzaldehyde has great 

potential to develop fluorine-18 labelled PET tracers. 

 

Scheme 75 Synthesis of a hypoxia tracer by oxime formation.259 

2.3.1.5 Application of [18F]fluorobenzaldehydes in hydrazine formation 

Another example of stable imine based PET tracers are hydrazones, which can be formed 

via condensation of [18F]fluorobenzaldehydes with hydrazines. A recent example is the 

publication of Carrol et al. on the synthesis of fluorine-18 labelled bis(thiosemicarbazo-

nato) complexes, variations of Cu-ATSM, known as tracers for hypoxia imaging.152 

A series of derivatives was synthesised using various fluorine-18 labelled building 

blocks: amide formation with 4-[18F]fluorobenzoic acid, click reaction with [18F]fluoro-

ethyl azide and imine condensation with 4-[18F]fluorobenzaldehyde. The condensation of 

4-[18F]fluorobenzaldehyde with hydrazine precursor 380 resulted in 94% radiochemical 

yield (analytically determined) (Scheme 76). In contrast, the amide formation on the 

same hydrazine precursor 380 with 4-[18F]fluorobenzoic acid resulted in only 32% 

radiochemical yield (analytically determined). 
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Scheme 76 Imine formation with 4-[18F]fluorobenzaldehyde for the synthesis of a 

bis(thiosemicarbazonata) hypoxia tracer.152 

2.3.1.6 Application of [18F]fluorobenzaldehydes in aldol condensation 

The aldol condensation of benzaldehydes with benzylideneacetones is well known.249 Li 

et al. and Cui et al. use this method in the production of benzylideneacetones 383a–c as 

PET tracers for the imaging of β-amyloid plaques by reacting 4-[18F]fluorobenzaldehyde 

354a with benzylideneacetones 382a–c (Scheme 77).250,251 

 

Scheme 77 Synthesis of fluorine-18 labelled benzylidene acetones by aldol condensation with 4-

[18F]fluorobenzaldehyde.250,251 

Benzylideneacetones 383a–c were successfully synthesised within 90 min in 

moderate radiochemical yields (12–25% ndc). The aldol condensation with [18F]benzal-

dehydes has thereby proven to be suitable for the synthesis of PET tracers. Unfortu-

nately the scope of the aldol condensation is limited, as an α-acidic ketone is required 

and the presence of other nucleophilic functional groups is not allowed. 

2.3.1.7 Application of [18F]fluorobenzaldehydes in multicomponent reactions 

Multicomponent reactions are important in bio-organic chemistry, since they deliver 

structurally diverse compounds in a single step from easy to obtain starting materials. 
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Scheme 78 Multicomponent reactions with [18F]fluorobenzaldehydes.252 

Benzaldehydes are frequently used as reaction partners in multicomponent 

reactions due to the versatility of the aldehyde functional group. It is therefore not 
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surprising that [18F]fluorobenzaldehydes are the first building blocks investigated for 

fluorine-18 based multicomponent reactions (Scheme 78).252 

Li et al. reacted [18F]fluorobenzaldehydes in Biginelli, Groebke, Ugi or Passerini 

multicomponent reactions, resulting in a diversity of complex radiolabelled molecules 

with the fluorine-18 label on a position where direct aromatic nucleophilic substitution 

was not possible. By combining the Biginelli multicomponent reaction with an additional 

condensation reaction, α1A-selective adrenoceptor antagonist [18F]L771.668 was synthe-

sised in a 4.4% decay-corrected overall radiochemical yield in 75 minutes (Scheme 79). 

As shown in this section, [18F]4-fluorobenzaldehydes are ideal building blocks as 

they can be synthesised efficiently and are able to participate in a wide range of reactions 

in an efficient manner. 

 

Scheme 79 Synthesis of [18F]L771.668 using the Biginelli MCR.252 

2.3.2 [18F]Fluoroaryl halides & [18F]fluorobenzyl halides 

In recent literature, there are various building blocks described in which the fluorine-18 

atom is attached to an aromatic ring and the functional group is an aromatic or aliphatic 

halide. The most commonly used aryl halide building block is [18F]4-fluoroiodobenzene, 

which is used in metal catalysed cross-coupling reactions (Section 2.3.2.1). Other aryl 

halides, which have very recently been applied are 1-bromo-3-[18F]fluorobenzene 

(Section 2.3.2.2) and 2-bromo-6-[18F]fluoropyridine (Section 2.3.2.3). The group of 18F-

labelled benzyl halide building blocks will be shown in Section 2.3.2.4 and finally, the 

novel building block [18F]4-fluorophenetylhalide, prepared using novel fluorine-18 

chemistry, will be shown in Section 2.3.2.5. 
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2.3.2.1 Synthesis and application of 4-[18F]fluoroiodobenzene 

4-[18F]fluoroiodobenzene has great potential in PET tracer synthesis, since it can be used 

as a reagent in metal-catalysed cross-coupling reactions, as recently reviewed by Way et 

al.250 The aromatic ring is only moderately electron deficient and conventional direct 

nucleophilic radiofluorination of its N2+BF4-, triazine, Br, I, IO2, N+Me3 or NO2 precursor 

results only in low radiochemical yield.253 To obtain 4-[18F]fluoroiodobenzene in a higher 

radiochemical yield, novel late stage radiofluorination methodologies are recently 

explored (Scheme 80).9,254–257 

 

Scheme 80 Synthesis of 4-[18F]fluoroiodobenzene.9,254–257 

All three reported methods provide 4-[18F]fluoroiodobenzene 402 in moderate to 

excellent radiochemical yields, thereby demonstrating the advantage of novel radio-

fluorination technology in the synthesis of building blocks.  

 

Scheme 81 Metal catalysed coupling reactions with 4-[18F]fluoroiodobenzene. 

Because these methods are rather new, applications of 4-[18F]fluoroiodobenzene 

are still scarce. Only 3 examples have been recently reported, each reporting a different 

type of metal catalysed cross-coupling (Scheme 81). 
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The first example is the synthesis of 2-amino-5-(4-[18F]fluorphenyl)pent-4-ynoic 

acid ([18F]FPhPa) 404, a novel amino acid for the PET imaging of tumours.255 The tracer 

was obtained via a Sonogashira coupling between alkyne 403 and 4-[18F]fluoro-

iodobenzene 402 (Scheme 82). This publication shows that using 4-[18F]fluoroiodo-

benzene as a building block, Sonogashira derived PET tracers to image amino acid 

transport can be produced in sufficient radiochemical yields without the use of 

additional protecting groups. 

 

Scheme 82 Synthesis of [18F]FPhPA by Sonogashira coupling with 4-[18F]fluoroiodobenzene.255 

The second example is the synthesis of dopamine D4 ligand [18F]FAUC 316 (408). 

This tracer is synthesised in two steps from 4-[18F]fluoroiodobenzene 402, first by a 

Buchwald–Hartwig reaction of amine 405 and followed by a reductive amination with 

aldehyde 407 (Scheme 83).254 The low overall radiochemical yield of 10% and the long 

synthesis time of 80 minutes show the disadvantage and challenge of the multistep 

synthesis for PET tracers. 

 

Scheme 83 Buildup synthesis of [18F]FAUC 316.251 

The last example is the synthesis of [18F]pitavastatin 410, which is prepared by 

Suzuki coupling between 4-[18F]fluoroiodobenzene 402 and boronic acid pinacol ester 

409 (Scheme 84).257 A relatively low overall radiochemical yield (12% decay corrected) 

is also reported here. 
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Scheme 84 Synthesis of [18F]pitavastatin.257 

In summary, the relatively low radiochemical yield of the cross-coupling reactions is 

most probably the main reasons that 4-[18F]fluoroiodobenzene is not very often used for 

PET tracer development. The building block itself however can be prepared in high 

radiochemical yields. 

2.3.2.2 Synthesis and application of 1-bromo-3-[18F]fluorobenzene 

A synthetic strategy towards building block 1-bromo-3-[18F]fluorobenzene 412 has been 

developed by Yuang et al., specifically for the synthesis of α-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid (AMPA) receptor targeting PET tracer 414 (Scheme 85).258 

The fluorine-18 atom in 1-bromo-3-[18F]fluorobenzene 412 is positioned at the 3-

position from the bromine atom and is thereby challenging to synthesise. Yuang et al. 

however did succeed in the synthesis of this building block in a radiochemical yield of 72 

± 3% (analytically determined) by radiofluorination of precursor 411. 

In the same reaction vessel, 1-bromo-3-[18F]fluorobenzene 412 was further reacted 

by copper-mediated N-arylation resulting in the desired PET tracer 414 in an overall 

radiochemical yield of 10 ± 2% (dc, calculated from starting amount of [18F]fluoride) in a 

short 60 min synthesis time with an excellent radiochemical purity and good specific 

activity. 

Thereby, Yuan et al. show that novel late-stage fluorination methods, in this case the 

fluorine-18 labelling of spirocyclic iodonium ylides, can be effectively used for the 

synthesis of aromatic fluorine-18 labelled building blocks which cannot be made by 

conventional nucleophilic aromatic substitution due to unfavourable electronic 

properties. 
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Scheme 85 Synthesis of AMPA receptor PET tracer 414 by Cu-mediated N-arylation with 1-bromo-3-

[18F]fluorobenzene.258 

2.3.2.3 Synthesis and application of 2-bromo-6-[18F]fluoropyridine 

2-Bromo-6-[18F]fluoropyridine 416 can be synthesised from commercially available 2,6-

dibromopyridine in radiochemical yields up to 79% (dc), since the nitrogen in the 

pyridine activates the radiolabelling position (Scheme 86).259,260 

Betts et al. investigated the reaction of this building block with model substrates in 

the Buchwald–Hartwig amination, Suzuki coupling and in a multicomponent reaction 

with CO and benzylamine (Scheme 86). The application in the synthesis of PET tracers 

has not yet been demonstrated, these first results are however promising. 
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Scheme 86 Synthesis and application of 2-bromo-6-[18F]fluoropyridine.260 

2.3.2.4 Synthesis and application of [18F]fluorobenzyl halides 

2.3.2.4.1 Synthesis of [18F]fluorobenzyl halides 

Benzyl halides are generally very useful in organic chemistry due to their versatile use in 

alkylation reactions at oxygen, nitrogen, sulfur, phosphor or carbon. It is therefore not 

surprising that multiple methods have been developed to synthesise [18F]fluorobenzyl 

halides.261,262 

The most commonly described approach towards 4-[18F]fluorobenzyl halides and 2-

[18F]fluorobenzyl halides is via a three step procedure, starting with the synthesis of 

[18F]fluorobenzaldehyde, followed by a reduction and finally the halogenation of the 

benzylalcohol. Lemaire et al. recently optimised this synthetic strategy towards various 

4- and 2-[18F]fluorobenzyl halides (Scheme 87).233 



 
Chapter 2 

116 

Synthesis of 3-[18F]fluorobenzyl halides using this strategy is almost impossible due 

to the electron rich properties of the aromatic ring as a consequence of substitution at 

the 3-position. Therefore, Basuli et al. synthesised 3-[18F]fluorobenzyl bromide from 

iodonium salt benzaldehyde precursor 356 (Scheme 88).232 

 

Scheme 87 Conventional synthesis of 2- and 4-[18F]fluorobenzyl halides.233 
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For both three-step strategies, moderate radiochemical yields of the 2-, 3- and 4-

[18F]fluorobenzyl halides could be obtained. The multi-step nature however makes this 

method rather complex and therefore challenging to automate and sensitive to failures. 

 

Scheme 88 Three step strategy towards 3-[18F]fluorobenzyl bromide.229 

Because not only electron deficient, but also electron neutral and electron rich 

iodonium salt precursors can be labelled with [18F]fluoride, Chun et al. investigated a 

direct one-step labelling towards 2-, 3- and 4-[18F]fluorobenzyl halides using iodonium 

salt precursors (Scheme 89).23 Using this strategy, the desired [18F]fluorobenzyl halides 

could be generated with radiochemical yields up to 55% (analytically determined) in just 

one synthesis step. 

 

Scheme 89 Preparation of [18F]fluorobenzylhalides in one step from diaryliodonium precursors.23 
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2.3.2.4.2 Application of [18F] fluorobenzyl halides in the synthesis of [18F]F-DOPA 

Since 1991, [18F]fluorobenzyl halides have been used as useful building blocks in the 

synthesis of [18F]F-DOPA 427 (Scheme 90).263   

Due to the electron rich properties of the aromatic ring, [18F]F-DOPA can only be 

synthesised by direct labelling via electrophilic fluorination using [18F]F2 gas. Drawbacks 

of this method is a relatively low yield (up to 5 GBq) and low specific activity, typically 

less than 1 GBq/µmol.264–268 To overcome these issues, a method using a building block 

approach was developed, where fluorine-18 was incorporated via a nucleophilic 

substitution reaction in the first reaction of a five step total synthesis: (1) reaction of 

trimethylammonium benzaldehyde precursor 353i with [18F]fluoride towards 

[18F]benzaldehyde 354i, (2) reduction to [18F]fluorobenzylalcohol 424i, (3) halogenation 

towards benzyl halide 425g or 425m and (4) chiral C–C coupling using a chiral catalyst 

and (5) deprotection to yield [18F]F-DOPA 427 (Scheme 90).263,269–279 

 

Scheme 90 Synthesis of [18F]F-DOPA via multistep approach using a [18F]fluorobenzyl halide as a 

building block.263,269–277 

For the enantioselective C–C coupling reaction, Lemaire et al. developed a method 

in 2004, where [18F]fluorobenzyl halide (bromide or iodide) is coupled with N-(diphenyl-

methylene)glycine tert-butyl ester 428 under basic conditions and in the presence of a 

phase transfer catalyst (PTC)(Scheme 91).269 This approach yielded [18F]F-DOPA 427 in 

an enantiomeric excess of >95%, an overall radiochemical yield of 25–30% (dc) and a 

specific activity of >100 GBq/µmol in 100 minutes. 

Recently, Lemaire et al. optimised and automated this method by studying various 

reaction conditions and various new PTCs for the C–C coupling.276,277 [18F]F-DOPA was 

synthesised using a FASTlab synthesiser in an improved radiochemical yield of 36% ± 

3% (dc) and >45 GBq at the end of synthesis, an enantiomeric excess of >95% and a 

synthesis time of 52–63 min (Scheme 91). In a similar fashion, 2-[18F]fluoro-L-tyrosine 
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was synthesised by Libert et al. in an overall radiochemical yield of 50.5 ± 2.7% 

(dc).276,277 

 

Scheme 91 C–C coupling and hydrolysis of a [18F]fluorobenzyl halide with N-(diphenylmethylene)glycine 

tert-butyl ester and a phase transfer catalyst (PTC).269,276,277 

Pretze et al. evaluated the [18F]F-DOPA synthesis procedure, however was not able 

to synthesise [18F]F-DOPA in the same radiochemical yield.278 It was determined that this 

was caused by a combination of factors: (1) decomposition of the trimethyl ammonium 

triflate group of the precursor molecule into 4-aminobenzaldehyde; (2) problematic 

automation due to formation of precipitates during the C–C coupling reaction. 

Because of these drawbacks, Pretze et al. investigated a late-stage fluorination 

approach, based on the radiofluorination of a nitrobenzaldehyde precursor and 

conversion of the aldehyde functional group to a phenol by Baeyer–Villiger oxidation. 

With this method, [18F]F-DOPA was synthesised in a radiochemical yield of 20 ± 1% 

(dc).278 

2.3.2.4.3 Application of [18F]fluorobenzyl halides in alkylation of phosphines and benzyl 

alcohols 

Three new tracers have been synthesised using [18F]fluorobenzyl halides since 2010 

(Scheme 92).279–281 Only [18F]fluorobenzyl bromides were used, probably due to a 

balance between a high reactivity as an alkylating agent for the alkylation of alcohols and 

phosphines, and a good stability. 
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Scheme 92 PET tracers synthesised using [18F]fluorobenzyl bromide as a building block. aThe specific 

activity is low due to the low amount of starting activity of [18F]fluoride.279–281 

Tropomyosin receptor kinase and colony-stimulating factor-1 receptor tracer 431 

(Scheme 92) was prepared via O-alkylation of the corresponding hydroxyl precursor 

with 4-[18F]fluorobenzyl bromide 425e.281 The yield as measured by HPLC was found to 

be 13%. Together with the low radiochemical yield for the three step synthesis to obtain 

4-[18F]fluorobenzyl bromide of 25–30% (ndc), the main conclusion of Bernard-Gauthier 

et al. was that another synthesis route should be developed for this tracer. They 

suggested the use of diaryliodonium salts as a precursor for either 4-[18F]fluorobenzyl 

bromide synthesis, or even for a direct late-stage labelling approach towards 431. 

The myocardial perfusion tracer 4-[18F]fluorobenzyltriphenylphosphonium ion 

430, as reported by Ravert et al., was synthesised via microwave assisted alkylation 

using 4-[18F]fluorobenzyl bromide (Scheme 92).280 The overall radiochemical yield was 

8.3% (ndc). Also in this case, a multistep procedure towards 4-[18F]fluorobenzaldehyde 

was used. However by performing all steps in one pot and by using microwave 

irradiation, the total synthesis time could be kept at 52 minutes. 

In the synthesis of the ErB1/ErB2 tracer [18F]lapatinib 432, 3-[18F]fluorobenzyl 

bromide 425q was synthesised in a three step procedure, using an iodonium salt 

precursor for the synthesis of 3-[18F]fluorobenzaldehyde (Scheme 88) in an overall 

radiochemical yield of 12% (ndc).279 
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In summary, [18F]fluorobenzyl halides have proven to be successful in the synthesis 

of [18F]F-DOPA. In the synthesis of new PET tracers however only relatively low 

radiochemical yields were obtained. It is not clear yet what is causing this. 

2.3.2.5 Synthesis and application of 4-[18F]fluorophenethyl bromide 

The synthesis of the building block 4-[18F]fluorophenethyl bromide 437 was developed 

by Ren et al. and was applied in the synthesis of serotonin 2a receptor PET tracer 

[18F]MDL100907 439 (Scheme 93).16 This building block cannot be synthesised in one 

step using conventional nucleophilic aromatic fluorination techniques, due to the high 

electron density of the aromatic ring. However, 4-[18F]fluorophenethyl bromide 434 was 

prepared recently in one step by radiofluorination of Ni-precursor 434.15 Immediately 

after formation, 4-[18F]fluorophenethyl bromide 437 was reacted with amine 438 to 

yield [18F]MDL100907 439. 

 

Scheme 93 Preparation of serotonin 2a receptor tracer [18F]MDL100907 using 4-[18F]fluorophenethyl 

bromide.16 

The overall radiochemical yield for the synthesis of [18F]MDL100907 is low (2.2%, 

ndc), which can be explained by a combination of a low radiofluorination yield and a low 

alkylation yield. Irrespective of the synthesis results, [18F]fluorophenylethyl bromide is 

still an attractive building block. More research is required towards the synthesis of 
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[18F]fluorophenylethyl bromide to make this method useful for high yield tracer 

synthesis. 

2.3.3 [18F]Fluorophenyl amines 

Various PET tracers have been synthesised using fluorine-18 labelled aromatic amine 

containing building blocks since 2010. Their high versatility and selectivity in reactions 

with electrophiles including acid chlorides, sulfonyl halides, Michael acceptors and 

various others make them attractive building blocks. 

In this chapter, the synthesis and application of [18F]fluoroanilines (Section 2.3.3.1), 

[18F]fluorobenzylamines (Section 2.3.3.2), [18F]fluorobenzohydrazides (Section 2.3.3.3) 

and [18F]phenethylamines (Section 2.3.3.4) will be described. 

2.3.3.1 Synthesis and application of [18F]fluoroanilines 

Both 1,4-dinitrobenzene and 1,2-dinitrobenzene are highly activated for nucleophilic 

aromatic substitution due to the fact that the nitro functional group is very strongly 

electron withdrawing and also an excellent leaving group. Starting from these 

precursors, 4-[18F]fluoronitrobenzene and 2-[18F]fluoronitrobenzene can be formed in 

radiochemical yields of >70% (Scheme 94). The remaining nitro group can be reduced to 

an amine in >80% radiochemical yield, giving 2- or 4-[18F]fluoroaniline in high overall 

radiochemical yields.191,282–286 

 

Scheme 94 Preparation of [18F]fluoroanilines in a two-step fluorine-18 labelling and nitro reduction 

procedure.191,282–286 

Radiofluorination of 1,3-dinitrobenzene gives 3-[18F]fluoronitrobenzene, however 

in only low radiochemical yields due to the increased electron density of the aromatic 

ring due to substitution of the 3-position. The yield can be increased if trimethyl-

ammonium precursor 441 is used as a precursor, because the trimethylammonium 

group is a better leaving group then the nitro group (Scheme 94).284,287,288 

One group of compounds in which [18F]fluoroanilines as reagents for PET tracers 

have proven to be useful are the epidermal growth factor receptor (EGFR) kinase 

inhibitors (Scheme 95).284,287,288 The anilinoquinazoline structure can be built-up by the 
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reaction of 4-[18F]fluoroanilines with chloroquinazoline 445 or cyclic amide 446, in 

which, for the latter, a strong base (1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)) and a 

coupling reagent (O-benzo-triazole-N,N,N’,N’-tetramethyluronium hexafluorophosphate 

(BOP)) are required. Using this pathway Gefitinib 447 could be synthesised in an overall 

radiochemical yield of 17.2 ± 3.3% (dc) and Afatinib 449 in an overall radiochemical 

yield of 17.0 ± 2.5% (dc).287,288 Vasdev et al. explored this strategy by synthesizing a 

library of anilinoquinazolines 448a–f, showing that these tracers can be obtained in  

9–55% overall radiochemical yield (dc).284 

 

Scheme 95 Synthesis of PET tracers for the EGFR-TKI by reaction of chloroquinazolines or cyclic amides 

with [18F]fluoroanilines.284,287,288 

In a similar approach, Huang et al. synthesised the potential indoleamine 2,3-

dioxygenase-1 tracer [18F]IDO5L 451 in a radiochemical yield comparable to the EGFR 

inhibitors (Scheme 96).286 A direct 18F-radiolabelling towards 451 using the correspond-

ing trimethylammonium precursor did not yield 451, due to decomposition of the 

precursor under the relatively harsh (120 °C, 30 min) reaction conditions. The coupling 
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reaction with 3-chloro-4-[18F]fluoroaniline, however, only required a temperature of 60 

°C, showing a clear benefit of the building block approach. 

 

Scheme 96 Synthesis of indolamine 2,3-dioxygenase-1 tracer [18F]IDO5L using 3-chloro-4-

[18F]fluoroaniline.286 

4-[18F]Fluoroaniline has been used for the synthesis of amides by reaction with acid 

chlorides. The first reported tracer is [18F]SAHA 453 (Scheme 97).285 The authors 

reported various efforts to introduce fluorine-18 by late-stage fluorination, but all 

approaches were unsuccessful. However, with the use of 4-[18F]fluoroaniline as building 

block they were successful, [18F]SAHA was obtained in a good overall 40% decay-

corrected radiochemical yield. Considering this excellent yield for a 4-step synthesis, the 

question arises whether other strategies are actually needed at all. 

 

Scheme 97 PET tracer synthesis via amide formation with 4-[18F]fluoroaniline; aIncludes formation of 

the hydroxamide from the methyl ester after the building block is introduced.191,285 

Stearoyl-CoA tracer 454 was also synthesised by reaction of 4-[18F]fluoroaniline 

with an acid chloride.191 However, this time only an overall radiochemical yield of 3% 

(dc) was obtained. The low yield was attributed by the authors to the poor reactivity of 
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4-[18F]fluoroaniline, since the same acid chloride precursor gave a radiochemical yield of 

21% (dc) with the aliphatic 3-[18F]fluoropropylamine. 

In summary, [18F]fluoroanilines have been successfully applied in the synthesis of 

multiple PET tracers. The major challenges in using this building block however are in 

the relative low radiochemical yield caused by the required two step synthesis to 

produce the building block and the poor nucleophilicity of the aniline. 

2.3.3.2 Synthesis and application of [18F]fluorobenzylamines 

[18F]Fluorobenzylamines are versatile building blocks, because they act as a nucleophile 

in many types of reactions (Scheme 98). Although not very commonly used, 

[18F]fluorobenzyl amine has recently been used for (sulfon)amide coupling (Section 

2.3.3.2.2), Michael addition (Section 2.3.3.2.3) nucleophilic substitution on 

(methylsulfonyl)-pyrimidines (Section 2.3.3.2.4) and guanidine synthesis (Section 

2.3.3.2.5).289–294 

 

Scheme 98 Recent examples of reactions with [18F]fluorobenzylamines. 

2.3.3.2.1 Synthesis of [18F]fluorobenzylamines 

[18F]Fluorobenzylamines are generally synthesised from cyanophenyl derivatives, since 

the cyano functional group provides an electron withdrawing character for a 

nucleophilic aromatic substitution of [18F]fluoride on 4-N,N,N-trimethylammonium-

benzonitrile triflate 455a (Scheme 99).289–293,295,296 After formation of [18F]fluoro-
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benzonitrile, the cyano group is reduced to an amine. Using this synthetic pathway, 4-

[18F]fluorobenzylamine 457a can be obtained in a radiochemical yield of 80–95%. 

 

Scheme 99 General synthesis route towards [18F]fluorobenzylamines.289–293,295,296 

For the reduction, various reducing agents have been used including LiAlH4, borane 

dimethyl sulfide and mixtures of sodium borohydride with transition metal salts.289–

293,296 Both LiAlH4 and borane dimethyl sulfide resulted in high radiochemical yields of 

[18F]fluorobenzylamines, but are, for practical reasons, less suited for automated 

synthesis procedures. Firstly, due to the highly anhydrous reaction conditions which are 

required and are difficult to achieve using an automated synthesis unit. Secondly, due to 

the formation of aluminium salts in the case of LiAlH4, which can lead to clogging of 

transfer lines and filters. 

To prevent the issues with the automated synthesis of [18F]benzylamines, 

Koslowsky et al. and Way et al. developed a new method for the reduction step. By per-

forming the reduction on a cartridge containing borohydride exchange resin (BER), 4-

[18F]fluorobenzylamine could be produced in a synthesis unit in >85% decay corrected 

radiochemical yield in 60 minutes starting from [18F]fluoride.292,296 

 

Scheme 100 Amide coupling reactions with [18F]fluorobenzylamine.289,291 



 
Fluorine-18 labelled building blocks for PET tracer synthesis 

127 

2.3.3.2.2 Application of [18F]fluorobenzylamine in (sulfon)amide coupling reactions 

Both human immunodeficiency virus 1 integrase (HIV-1 IN) inhibitor 459 and CB2 

receptor ligands 460a and 460b have been synthesised utilizing amide coupling reaction 

of a methyl ester or acid chloride precursor with 4-[18F]fluorobenzylamine (Scheme 

100).289,291 In the case of the HIV-1 IN inhibitor 459, the labelled product was obtained in 

an overall radiochemical yield of 2% (ndc) in 90 minutes synthesis time and in the case 

of CB2 receptor ligands, 460a and 460b were obtained in an overall radiochemical yield 

of 15% (dc) in 140 minutes. 

4-[18F]Fluorobenzylamine was used for the synthesis of a sulfonamide, via a 

reaction with sulfonyl chloride 461, to obtain COX-2 tracer 462 in a radiochemical yield 

of 20% (dc) in 85 min, calculated from 4-[18F]fluorobenzylamine (Scheme 101).294 

 

Scheme 101 Coupling of [18F]fluorobenzylamine with sulfonyl chloride 461.294 

2.3.3.2.3 Application of [18F]fluorobenzylamine in Michael addition reactions 

The natural product geldanamycin 463 is a potent heatshock protein-90 inhibitor which 

contains a methoxy quinone moiety. The methoxy quinone can undergo a Michael 

addition reaction with various primary amines, such as [18F]fluorobenzylamine, to obtain 

fluorine-18 labelled derivatives (Scheme 102). 

 

Scheme 102 Synthesis of [18F]geldanamycin via Michael addition using [18F]4-fluorobenzylamine.292 
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The coupling of 4-[18F]fluorobenzylamine with geldanamycin 463 was investigated by 

Way et al.292 A radiochemical yield of 68% (determined by radio-TLC) after 30 minutes 

at 120 °C was reported. The labelled product was not isolated, thus no overall 

radiochemical yield and synthesis time could be given. However, since the new 

NaBH4/NiCl2 reduction methodology was used to synthesise 4-[18F]fluorobenzylamine, 

decent radiochemical yields can be expected despite the multistep procedure. 

 

Scheme 103 Synthesis of COX-2 inhibitors by nucleophilic aromatic substitution with 4-[18F]fluoro-

benzylamine.290 

2.3.3.2.4 Application of [18F]fluorobenzylamine in nucleophilic aromatic substitution on 

(methylsulfonyl)-pyrimidines 

Tietz et al. reported the synthesis of two COX-2 inhibitors by the nucleophilic aromatic 

substitution of 4-[18F]fluorobenzylamine on the (methylsulfonyl)pyrimidine moiety of 

two precursors (Scheme 103).290 Radiochemical yields of the coupling reactions were 

moderate, 27 ± 11% (dc) for product 466a and 23 ± 1% for product 466b. 

2.3.3.2.5 Application of [18F]fluorobenzylamine in guanidine synthesis 

The first syntheses of the tracers para-[18F]fluorobenzylguanidine [18F]PFBG 468a and 

meta-[18F]fluorobenzylguanidine [18F]MFBG 468b, using [18F]fluorobenzylamines, were 

reported by Garg et al. in 1994 as an alternative to the commonly used cardiology and 

oncology tracer [123I]MIBG.295 Following this publication, two articles were published in 
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1996 and 2002 in which [18F]PFBG was investigated in rat and dog.297,298 It took until 

2014, when Zhang et al. showed a renewed interest in [18F]MFBG and [18F]PFBG.293 For 

the synthesis of [18F]MFBG and [18F]PFBG, the route used was similar to that of Garg et 

al. (Scheme 104). A few modifications to the radiolabelling were made to improve the 

overall radiochemical yields, in particular by using lower reaction temperatures and 

shorter reaction times for the [18F]fluorobenzonitrile synthesis and by using the more 

reactive 1H-pyrazole-1-carboximidamide 467 instead of 2-methyl-2-thiopseudourea 

sulfate for the guanidine formation. 

 

 

Scheme 104 Synthesis of [18F]MFBG and [18F]PFBG.293 

The overall radiochemical yields using the improved synthesis were 11 ± 2% (dc) 

for [18F]MFBG and 41 ± 12% (dc) for [18F]PFBG. The lower overall radiochemical yield 

for [18F]MFBG was mainly due to the low radiochemical yield of the synthesis of 3-

[18F]fluorobenzonitrile of 21 ± 5% where 4-[18F]fluorobenzonitrile could be synthesised 

in 75 ± 7%. 

In summary, as can be seen by the examples mentioned in Sections 2.3.3.2.2 to 

2.3.3.2.5, [18F]fluorobenzylamine is a useful building block which was successfully 

applied in the synthesis of several PET tracers. Nevertheless, the overall radiochemical 

yields from PET tracer synthesis performed with [18F]fluorobenzylamine are in general 

moderate to low and the reactions times are quite long, which challenges the use of this 

methodology. 

2.3.3.3 Synthesis and application of [18F]fluorobenzohydrazides 

The [18F]fluorobenzohydrazide building blocks 471a and 471b have been developed by 

Al Jammaz et al. (Scheme 105).294 They were synthesised in a two-step procedure 

starting with the synthesis of ethyl 4-[18F]fluorobenzoate 470a and ethyl 2-[18F]fluoro-4-

pyridinecarboxylate 470b. The esters were subsequently converted to [18F]fluoro-

benzohydrazides 471a and 471b by reacting with hydrazine hydrate.299,300 
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Scheme 105 Synthesis of [18F]fluorobenzohydrazide building blocks.299 

These building blocks have recently been applied in the synthesis of fluorine-18 

labelled derivatives of methotrexate (Scheme 106).300 In this synthesis, the activated N-

succinimidylmethotrexate carboxylate 472 was reacted with [18F]fluorobenzohydrazide 

471a or 471b under mild conditions to obtain the methotrexate derivatives 473a and 

473b, labelled with fluorine-18. The overall decay corrected radiochemical yields, 

starting from [18F]fluoride, were >80% with a synthesis time of 40–45 minutes, which is 

excellent for a multistep procedure. Furthermore, the products were obtained in >97% 

radiochemical purity and a specific activity of 11 GBq/µmol without the need of a HPLC 

purification. 

 

Scheme 106 Fluorine-18 labelling of methotrexate using [18F]fluorobenzohydrazide building blocks.300 
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The multistep procedure towards fluorine-18 labelled methotrexate is superior to 

other reported methods in which the PET tracers are synthesised in one step by direct 

nucleophilic aromatic substitution, because these methods only provide fluorine-18 

labelled methotrexate derivatives in overall radiochemical yields of less than 10%.301,302 

2.3.3.4 Synthesis and application of [18F]fluorophenethylamines 

Since 2010, there have been two PET tracers published containing the fluorophenethyl 

moiety.303–305 In the synthesis of the guanidine PET tracer 478, described by Jang et al., a 

three-step procedure for the synthesis of [18F]fluorophenethylamine building block 476 

has been reported (Scheme 107).303  

First, [18F]fluorobenzaldehyde 354c is synthesised by nucleophilic aromatic 

substitution of trimethylammonium precursor 353c with [18F]fluoride. Next, [18F]fluoro-

benzaldehyde 354c is reacted with nitromethane in a nitroaldol condensation to 

nitroalkene 474. After reduction and benzyl deprotection, phenethylamine building 

block 476 is obtained. This building block is reacted with cyanogen bromide and 

subsequently treated with NH4Br/NH4OH, resulting in PET tracer 478. The overall 

radiochemical yield over all 6 steps was 1–2% (dc) and the overall synthesis time was 

210 minutes. 

 

Scheme 107 Synthesis of 4-[18F]fluoro-3-hydroxyphenylethylguaninidine in six steps.303 
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To improve the overall synthesis time and radiochemical yield, Jang et al. reduced 

the number of reaction steps to a total of four steps by first synthesizing Boc/benzyl 

protected phenethylamine building block 480 in one step by 18F-fluorination of 

iodonium salt precursor 479 (Scheme 108).304  

 

Scheme 108 Synthesis of 4-[18F]fluoro-3-hydroxyphenylethylguaninidine in four steps.304 

Subsequently the Boc protecting group was removed and the primary amine 

reacted with reagent 481 to form guanidine 482. In the last step, all remaining 

protecting groups were removed to obtain PET tracer 478. This time, an increased 

overall radiochemical yield of 7 ± 3% (dc) was obtained and the synthesis time was 

decreased to 150 min. 

The second PET tracer with a fluorophenethyl moiety is neuronal nitric oxide 

synthase (nNOS) tracer 488. This tracer was obtained with 3-[18F]fluorophenethyl amine 

485 (Scheme 109),305 which was synthesised in two steps by radiofluorination of Boc 

protected iodonium ylide precursor 483 and subsequent removal of the Boc protecting 

group with HCl in dioxane. 3-[18F]Fluorophenethylamine was subsequently coupled to 

aldehyde 486 by reductive amination, followed by deprotection of the primary amine to 

obtain 488. Using this strategy, PET tracer 488 could be obtained in an overall 

radiochemical yield of 15% (dc). 
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This procedure was not further optimised due to issues with reproducibility of the 

reductive amination step and because promising results were obtained with the novel 

late-stage radiofluorination of boronic acid pinacol esters (Table 1, entry 9). 

 

Scheme 109 Building block approach towards neuronal nitric oxide synthase tracer 488.305 

2.3.3.5 Synthesis and application of N-(2-aminoethyl)-N-ethyl-N-[2-(2-[18F]fluoropyridin-3-

yloxy)ethyl]amine 

Amine building block 491 was specifically developed by Maisonial et al. for the synthesis 

of melanin targeting PET tracer 493 (Scheme 110).306 A direct fluorine-18 labelling 

approach was initially envisaged by Maisonial et al., however was not explored due to a 

lack of reports about direct radiofluorination in these types of structures. Therefore, a 

three-step approach, as shown in Scheme 110, was pursued as alternative. Nitro 

precursor 489 was reacted to 490 in 20–40% (dc) radiochemical yield. Deprotection 

resulted in amine 491 and subsequent coupling with acid chloride 492 yielded the 

product in an overall radiochemical yield (dc) of 6–10% and total synthesis time of 110–

130 minutes. 
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Scheme 110 Multistep radiosynthesis of fluorine-18 labelled melanoma PET tracer 493.306 

2.3.4 [18F]Fluorobenzoic acid & [18F]fluorobenzoic acid esters 

[18F]Fluorobenzoic acids and [18F]fluorobenzoic acid esters are often applied in reactions 

with amines to formamides. Activated esters are either formed in situ from 

[18F]fluorobenzoic acid (Section 2.3.4.1), or the active esters are isolated before use, as is 

the case with [18F]SFB (Section 2.3.4.2) and [18F]6-fluoronicotinic acid 2,3,5,6-

tetrafluorophenyl ester ([18F]FPy-TFP, Section 2.3.4.3). 

2.3.4.1 Synthesis and application of 4-[18F]fluorobenzoic acid 

4-[18F]Fluorobenzoic acid is synthesised via nucleophilic aromatic substitution with 

[18F]fluoride on either ethyl 4-nitrobenzoate 469c or (4-ethoxycarbonylphenyl)-

trimethylammonium triflate 469a, followed by basic hydrolysis of the ethyl ester using 

tetramethylammonium hydroxide or sodium hydroxide and purification by SPE (Scheme 

111).152,307,308 

 

Scheme 111 Synthesis of 4-[18F]fluorobenzoic acid.152,307,308 

In these recent articles, no radiochemical yields of the obtained 4-[18F]fluoro-

benzoic acid are mentioned, however, in publications from before 2010, radiochemical 

yields up to 77% are described when started from trimethylammonium triflate 

precursor 469a.309 
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Scheme 112 Activation of 4-[18F]fluorobenzoic acid and coupling to hydrazine derivative 497.152 

Various coupling reagents can be used to activate benzoic acid for nucleophilic 

substitution. Caroll et al. used BOP 495 together with N,N-diisopropylethylamine as a 

base to couple [18F]4-fluorobenzoic acid to hydrazine derivative 497, followed by a Cu 

for Zn exchange resulting in hypoxia tracer bis(thiosemicarbazonate) complex 498-Cu in 

32% radiochemical yield, starting from 4-[18F]fluorobenzoic acid (Scheme 112).152 

Another coupling agent to activate 4-[18F]fluorobenzoic acid, N,N’-dicyclohexyl-

carbodiimide (DCC) 499, is applied by Ackermann et al. for the synthesis of fluorine-18 

labelled naphthoquinone as a PET tracer for hypoxia (Scheme 113).307 This approach 

resulted in the desired labelled compound 502 in a moderate radiochemical yield of 27 ± 

5% starting from 4-[18F]fluorobenzoic acid, showing that DCC can be used efficiently as 

reagent to couple 4-[18F]fluorobenzoic acid with primary alcohols. 

The last and most recent example of the use of a coupling agent to activate 4-

[18F]fluorobenzoic acid is in the synthesis of PARP1 inhibitor [18F]PARPi 506 by 

activation of 4-[18F]fluorobenzoic acid using HBTU and subsequent reaction with 

secondary amine precursor 505 in an overall radiochemical yield of 10% (ndc) (Scheme 

114).308 This is a low but acceptable radiochemical yield, considering the 4-[18F]fluoro-

benzoic acid is reacted with a bulky secondary amine. 



 
Chapter 2 

136 

 

Scheme 113 Activation of 4-[18F]fluorobenzoic acid with DCC and coupling to alcohol 501.307 

 

Scheme 114 Activation of 4-[18F]fluorobenzoic acid with HBTU and coupling to secondary amine 505.308 
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2.3.4.2 Synthesis and application of N-succinimidyl 4-[18F]-fluorobenzoate ([18F]SFB) 

[18F]SFB is one of the most applied fluorine-18 labelled building blocks to form amides 

from amines. It is mainly applied to label large peptides, due to its high selectivity for the 

reaction with amines in a peptidic structure in the presence of various unprotected 

functional groups.310 Furthermore, the reaction of [18F]SFB with primary amines 

proceeds under mild reaction conditions, which is ideal for the labelling of peptides 

because their secondary structure is readily lost under harsh reaction conditions. These 

characteristics are of less importance for the labelling of small molecules, as these 

generally are more stable and selectivity is not a big issue because a protective group 

strategy can be applied easily. For the labelling of small molecules, [18F]SFB would be 

less preferred, as various building blocks are available which are more simple to 

synthesise such as 4-[18F]fluorobenzaldehyde and 2-[18F]fluoroethyl tosylate. Still, in the 

past years, [18F]SFB has been used 21 times in the labelling of small molecules.73,82,311–325 

The main reason is the fact that at various PET imaging centres, the method to synthesise 

[18F]SFB is readily available and automated for its use in the labelling of peptides. From a 

practical point of view, it is thus a small step to also use [18F]SFB for the labelling of small 

molecules. 

 

Scheme 115 One pot, three step synthesis of [18F]SFB.73,82,311–315 

Currently, there are three methods in use for the synthesis of [18F]SFB. The most 

convenient and commonly used method is the synthesis of [18F]SFB via a one-pot, three-

step procedure (Scheme 115).73,82,311–315  This approach was first published by Tang et al. 

and starts with the radiofluorination of ethyl 4-(trimethylammonium triflate)benzoate 

469a in MeCN, followed by addition of tetrabutylammonium hydroxide (TBAOH) or 

tetrapropylammonium hydroxide (TPAOH) in water to hydrolyse ethyl 4-[18F]fluoro-

benzoate 470a to 4-[18F]fluorobenzoic acid 494a. After azeotropic drying with 
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additional MeCN, [18F]SFB 507 is prepared by reaction with N,N,N’,N’-tetramethyl-O-(N-

succinimidyl) uronium tetrafluoroborate (TSTU) or N,N,N’,N’-tetramethyl-O-(N-succini-

midyl) uronium hexafluorophosphate (HSTU) (Scheme 115). 

Purification of [18F]SFB is performed by trapping on a C18 SPE cartridge, washing 

the cartridge with water and eluting the building block in an organic solvent of choice, 

preferably through alumina and SCX cartridges to remove any remaining [18F]fluoride 

and other impurities. With these methods, decay corrected radiochemical yields can be 

obtained up to 75%, and due to the absence of time consuming HPLC purifications and 

the use of just one SPE purification, the overall synthesis time can be less than 40 

minutes. 

The second method to synthesise [18F]SFB is a two-pot procedure, in which 4-

[18F]fluorobenzoate 494a is formed by hydrolysis of ethyl 4-[18F]fluorobenzoate 470a 

with NaOH or HCl, which is subsequently purified by SPE before formation of 

[18F]SFB.316–318 This method is however not recommended, as it only results in longer 

synthesis times and lower radiochemical yields, without having any advantages over the 

one pot procedure. 

The third method to synthesise [18F]SFB is a very different, two-step approach, first 

reported by Glaser et al. in 2009 and which is recently used by Ganguly et al. (Scheme 

116).319,320 In this method, purified 4-[18F]fluorobenzaldehyde 354a, is oxidised with 

(diacetoxyiodo)benzene in the presence of N-hydroxysuccinimide (NHS). HPLC 

purification is necessary to obtain [18F]SFB in sufficient radiochemical purities (>99%) 

for further reactions. Glaser et al. reported a decent overall radiochemical yield of 66 ± 

6% (dc), which could however not be reproduced by Ganguly et al., reporting only a 25% 

(dc) overall radiochemical yield. Although this method only requires two synthetic steps, 

it still seems that the three-step, one-pot procedure as depicted in Scheme 115 is 

currently the most convenient, as it is more simple to purify [18F]SFB. 

 

 

Scheme 116 Two-step synthesis of [18F]SFB.319,320 

As a building block for the synthesis of low molecular weight PET tracers, [18F]SFB 

is used solely in the base catalysed acylation of primary amine precursors, as shown in 

Scheme 117.73,82,311–328,320–325  
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The main advantages of labelling amine precursors with [18F]SFB over other 

fluorine-18 labelled building blocks such as 4-[18F]fluorobenzaldeyde and [18F]FETos is 

that the acylation with [18F]SFB can be performed under very mild reaction tempera-

tures (typically 20–50 °C, mild basic) and with very high selectivity for the primary 

amine functional group. Due to the high selectivity of [18F]SFB towards primary amines, 

protection of other functional groups in the precursor molecule is generally not required 

(Table 2). As a consequence, the precursors are easier to synthesise and no removal of 

the protecting groups is necessary afterwards. 

Table 2 Functional groups tolerated in acylation of amines with [18F]SFB. 

Functional group Compounds (Scheme 117) 

Carboxylic acid 514,313 515,13 522,318 523,312 520a,324 520b,320 520c,324 518a,325 518b,325 
519a,325 519b325 

Guanidine 516,315 524,317 517314 

Alcohol 517314 

Hydroxamide 521316 

 

Typically, reaction of primary amines with [18F]SFB are performed under basic 

conditions. Interestingly, for this reaction not just one type of base, but a wide range of 

bases in various solvents are reported. Two categories for the solvents and bases can be 

identified: 

1) Reactions in water using water soluble bases or buffers, including borate buffer, 

carbonate buffer, sodium phosphate and potassium carbonate. Organic solvents, 

generally MeCN, can be added to increase solubility of the precursors. These 

conditions are used when the precursor is highly water soluble.82,312,314,316–

318,320,324 

2) Reactions in organic solvents (DMSO, DMF, MeCN), using bases which readily 

dissolve in these solvents (DIPEA, NEt3). These conditions are used when the 

precursor is insoluble in water.73,311,315,321,325 
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Scheme 117 PET tracers synthesised by amide formation using [18F]SFB. aIncludes removal of acetyl 

protecting groups.73,82,311–318,320–325 
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Scheme 117 (Continued) 
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Scheme 117 (Continued) 

Two recent publications compared the reaction of [18F]SFB, [18F]fluoroethyl tosylate 

and 2-[18F]fluoro-4-nitrophenyl-propionate [18F]NFP with amine precursors 525 and 

526 in the synthesis of pycolylamine based cell death imaging agents (Fig. 12 and Table 

3).73,82 

 

Figure 12 Alkylamine modified picolylamine derivatives.73,82 

 

Table 3 Labeling of picolylamine precursors 525 and 526 with 18F-labelled building blocks.73,82 

Precursor Building Block Labelling conditions Overall RCY (dc) Synthesis time 

525 [18F]SFB DMSO, DIPEA, RT, 10 min 71 ± 11% 75 min 

 [18F]FETos DMSO, DIPEA, 100 °C, 10 min 76 ± 13% 65 min 

 [18F]NFP RT, 10 min 68 ± 9% 105 min 

526 [18F]SFB Borate buffer pH 8.5, 50 °C, 10 min 24 ± 4% 100 min 

 [18F]FETos MeCN, K2CO3, 120 °C, 30 min 17 ± 2% 105 min 
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Labelling of these precursors with [18F]SFB resulted in fluorine-18 labelled 

derivatives 508 and 509 (Scheme 117) in overall radiochemical yields of 71 ± 11% (dc) 

and 13 ± 2% (ndc), respectively. Comparable radiochemical yields were obtained when 

the precursors were reacted with [18F]FETos at 100 °C and 2-[18F]fluoro-4-nitrophenyl-

propionate ([18F]NFP) at room temperature. This indicates that precursors 525 and 526 

are stable under high temperatures. The reason for the large difference in radiochemical 

yield between labelling precursor 525 versus 526 was not explained. 

In general, [18F]SFB is used to label aliphatic amines, however there are two recent 

examples of labelling aniline derivatives. Neto et al. tried to synthesise a PET tracer for 

imaging EGFR tyrosine kinase 510 (Scheme 117).322 Unfortunately, reaction of the 

aniline precursor with [18F]SFB in DMSO using various buffers did not lead to the 

formation of 510. Because stronger alkaline conditions are probably required to 

facilitate labelling of aniline derivatives, the pH was increased to >9, this however 

resulted in undesired rapid hydrolysis of [18F]SFB. Svensson et al., however, have 

successfully reacted their aromatic amine precursor with [18F]SFB in the synthesis of 

cyclin-dependent kinase-2 inhibitor 512 in a decent radiochemical yield of 36–43% 

(dc).323 A major difference from the method of Neto et al. is that the reaction is 

performed under water-free conditions using NaH as a base. Due to the absence of water, 

[18F]SFB does not hydrolyse and is able to react with the amine. 

 

Scheme 118 PET tracers for imaging PSMA, labelled using [18F]SFB derivatives.313 
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Derivatives of [18F]SFB can potentially be made by changing the position of the 

fluorine-18 atom and by the addition of substituents on the aromatic ring. Yang et al. 

used this strategy to improve the properties of Prostate-Specific Membrane Antigen 

tracers 514 and 515.313 By changing the location of the fluorine-18 atom to the 2-

position and adding a bromine or iodine atom to the 4-position, they were able to 

produce tracers 529a and 529b, which have increased PSMA binding, presumably due to 

increased interaction with a hydrophobic subpocket in the enzyme (Scheme 118). 

2.3.4.3 Synthesis and application of 6-[18F]fluoronicotinic acid 2,3,5,6-tetrafluorophenyl 

ester ([18F]FPy-TFP) 

Olberg et al. reported on a different benzoic acid activated ester, [18F]FPy-TFP 531 

(Scheme 119).326 [18F]FPy-TFP can be made in just one synthesis step, due to the stability 

of the TFP ester under the applied radiolabelling conditions. Furthermore, as for 

[18F]SFB, also [18F]FPy-TFP can be purified by simple solid phase extraction procedures. 

Besides labelling of large peptides, [18F]FPy-TFP is also used for the labelling of 

small molecules, more specifically, in the labelling of PSMA targeting tracers (Scheme 

120).327,328 The carboxylic acids in the precursor were protected with 4-methoxybenzyl 

ether (PMB) protecting groups before reaction with [18F]FPy-TFP in case of tracer 532, 

therefore requiring an acidic deprotection after the coupling.327 

 

Scheme 119 Synthesis of [18F]FPy-TFP.326 

Protection of the carboxylic acids is however not required, as seen in the synthesis 

of tracer 533, in which the coupling went smoothly while the carboxylic acid functional 

groups were unprotected.328 Most probably because [18F]FPy-TFP already contains an 

activated ester, therefore no additional coupling reagents are needed. 

In conclusion, both PSMA targeting tracers could be made in decent overall 

radiochemical yields, showing that [18F]FPy-TFP is also a suitable building block for the 

synthesis of low molecular weight PET tracers. 
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Scheme 120 Synthesis of PSMA targeting tracers using [18F]FPy-TFP. aIncludes deprotection of the PMB 

protected carboxylic acids using trifluoroacetic acid.327,328 

2.3.5 Other fluorine-18 labelled aromatic building blocks 

2.3.5.1 Synthesis and application of 4-[18F]fluorophenyldiazonium ion 

[18F]Fluoroaniline 444a, of which its synthesis and use has been described in Section 

2.3.3.1, can be transformed to fluorine-18 labelled fluorophenyldiazonium ion 534.  

 

Scheme 121 Synthesis of dopamine D3-selective ligand [18F]SH317 using building block 4-[18F]fluoro-

phenyldiazonium chloride.283 
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Phenyldiazonium ions are potentially interesting building blocks in radiochemistry, since 

radical arylation reactions with these building blocks proceeds generally mild and 

diazonium ions are insensitive to the presence of functional groups. There is only one 

recent publication which describes the use of this building block, in the synthesis of 

dopamine D3-selective ligand [18F]SH317 (Scheme 121).283 The overall radiochemical 

yield of [18F]SH317 is 1–3% non-decay corrected with an overall synthesis time of 100 

minutes. 

2.3.5.2 Synthesis and application of N-phenyl-C-(4-[18F]fluorophenyl)nitrone 

Zlatopolskiy et al. developed N-phenyl-C-(4-[18F]fluorophenyl) nitrone 538, a building 

block capable of undergoing [3+2]-dipolar cycloadditions with a variety of dipolaro-

philes.329,320 4-[18F]Fluorobenzaldehyde 354a is synthesised via nucleophilic substitution 

of trimethylammonium salt 353a with [18F]fluoride (Section 2.3.1.1), followed by 

reaction with N-phenylhydroxylamine 537 resulting in N-phenyl-C-(4-[18F]fluorophenyl) 

nitrone 538 in a decay corrected radiochemical yield of 73.6 ± 5.8%, starting from 4-

[18F]fluorobenzaldehyde (Scheme 122). 

 

Scheme 122 Synthesis of N-phenyl-C-(4-[18F]fluorophenyl) nitrone.329,330 

Zlatopolskiy et al. investigated the reaction of N-phenyl-C-(4-[18F]fluorophenyl)-

nitrone 538 with a variety of N-substituted maleimides, which can be easily introduced 

in peptides (Scheme 123).329 The radiochemical yields towards the mixtures of endo and 

exo bicyclic isoxazolidines 540a–c, as measured by HPLC, were 87% for 540a, 91% for 

540b and 91% for 540c. The endo/exo ratio was around 2 : 1 for compounds 540a–c. 

Furthermore Zlatopolskiy et al. investigated the Kinugasa reaction by reacting 

alkynes 541a–d with N-phenyl-C-(4-[18F]fluorophenyl)nitrone 538 under copper 

catalysis resulting in β-lactams 542a–d (Scheme 124).330 Radiochemical yields of 65–

89% (analytically determined) were obtained with trans–cis ratios varying between 2: 3 

and 1: 5 depending on the used alkyne. 
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Scheme 123 Reaction of N-phenyl-C-(4-[18F]fluorophenyl) nitrone with N-substituted maleimides.329 

Both the reaction towards isoxazolidines as well as the Kinugasa reaction can 

potentially be used for the labelling of peptides equipped with maleimide or terminal 

alkyne functional groups, as long as the high reaction temperature of 110–120 °C would 

not lead to degradation of the peptides. For the synthesis of low molecular weight PET 

tracers these reactions could also be useful for the synthesis of PET tracers with an 

isoxazolidine or β-lactam core structure. 

 

Scheme 124 Application of N-phenyl-C-(4-[18F]fluorophenyl) nitrone in the synthesis of fluorine-18 

labelled β-lactams.330 

2.3.5.3 Synthesis and application of 4-[18F]fluorophenyl nitrile oxide 

Next to the development of N-phenyl-C-(4-[18F]fluorophenyl)nitrone 538 (Section 

2.3.5.2), Zlatopolskiy et al. also developed 4-[18F]fluorophenyl nitrile oxide 544 (Scheme 

125), which can be used as building block for a copper free [2+3] cycloaddition 

alternative to the Huisgen 1,3-dipolar cycloaddition (‘click’-reaction).331 

4-[18F]Fluorophenyl nitrile oxide 544 can be synthesised in three steps. Firstly, 4-

[18F]fluorobenzaldehyde is synthesised, (Section 2.3.1.1) followed by reaction with 

hydroxylamine and sodium hydroxide yielding benzaldoxime 543 in 92.1 ± 2.4% (ndc) 

in 10 minutes. Because 4-[18F]fluorophenyl nitrile oxide 544 is very reactive, it was not 

isolated but formed in situ and reacted in one pot with various dipolarophiles. 
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Scheme 125 Three step synthesis of the building block 4-[18F]fluorophenyl nitrile oxide.331 

Initial studies in which 4-[18F]fluorophenyl nitrile oxide 543 was formed in situ 

from oxime 543 and reacted with various model dipolarophiles showed high 

radiochemical yields of 57–95% as measured by HPLC. To prove that this building block 

is also suitable for the synthesis of PET tracers for COX-2, it was reacted with three 

indomethacin derivatives which contain a dipolarophile functional group (Scheme 126). 

 

Scheme 126 Application of 4-[18F]fluorophenyl nitrile oxide 544 in the synthesis of fluorine-18 labelled 

indomethacin.331 
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Fluorine-18 labelled indomethacin derivatives 545 and 546 could be isolated in 

86% and 55% (ndc) radiochemical yield, starting from building block 543. 18F-

Indomethacin derivative 547 was less easily formed and could initially only be obtained 

in a low radiochemical yield. However, when the oxidant in the reaction was changed 

from phenyliodine bis(trifluoroacetate) (PIFA) to [bis(acetoxy)iodo]-benzene (BAIB), 

this indomethacin derivative could also be obtained in a radiochemical yield of 35% 

(ndc), starting from 543. Since BAIB is a weaker oxidant, leading to the slower 

generation of 4-[18F]fluorophenyl nitrile oxide 544 from oxime 543, the alkene 

precursor has more time to react before nitrile oxide 544 decomposes by acid-promoted 

decomposition, solvolysis or reaction with contaminants. 

Whether this building block is useful for low molecular weight PET tracers remains 

unclear, as its multistep synthesis is time consuming and results in low to moderate 

radiochemical yields. For the labelling of biomolecules, such as peptides it can be 

beneficial because of the mild reaction conditions, regio-specificity and good 

cycloaddition yields. Zlatapolsky et al. did however notice that the amount of precursor 

needed for acceptable cycloaddition radiochemical yields was high, leading to low 

specific activities as it is generally difficult to separate a large biomolecule precursor 

from its labelled product. This issue was solved by in situ conversion of 4-

[18F]fluorobenzaldoxime 543 to an imidoyl chloride by treatment with chloramine-T. 

Using this more stable derivative of 4-[18F]fluorobenzaldoxime 543, the amount of 

required precursor could be lowered to 5 nmol, thus making this method also useful for 

the labelling of biomolecules. 

2.3.5.4 Synthesis and application of [18F]fluorophenyl alkynes 

Despite the fact that the Huisgen 1,3-dipolar cycloaddition (‘click’-reaction) is generally 

and widely applied in the synthesis of small molecule PET tracers, there are only three 

reports which describe ‘click’-reactions with aromatic fluorine-18 labelled alkyne 

building blocks. The first report describes the synthesis and application of building block 

2-[18F]fluoro-3-pent-4-yn-1-yloxypyridine ([18F]FPyKYNE) 549 (Scheme 127). This 

building block has been originally developed by Kuhnast et al. as a prosthetic group for 

the labelling of azide modified macromolecules using the click reaction.332 

Arksey et al. showed that [18F]FPyKYNE 549 can be used as a building block in the 

synthesis of a fluorine-18 labelled derivative of the AT1 inhibitor losartan (Scheme 

127).333 The ‘click’-reaction of [18F]FPyKYNE 549 with the azide modified losartan 550, 

followed by trityl deprotection, proceeded in good radiochemical yields of 44–70% (dc). 

Unfortunately, the overall radiochemical yield starting from [18F]fluoride was quite low 

(7–14% dc) due to the low yielding aromatic nucleophilic substitution on nitro precursor 

548. 
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Scheme 127 Synthesis of a fluorine-18 labelled losartan derivative using [18F]FPyKYNE as a building 

block.332,333 

A recent publication by Roberts et al. describes the synthesis of another fluorine-18 

labelled alkyne building block: (4-[18F]fluorophenyl)acetylene 553a, which can be 

obtained by direct labelling of its trimethylammonium precursor (Scheme 128).334 

Although the aromatic ring is only marginally electron deficient, the (4-[18F]fluoro-

phenyl)acetylene building block could still be obtained in a radiochemical yield of 14% 

(ndc). Purification of this building block was done by HPLC, because SPE methods did not 

lead to desired radiochemical purities of this reagent. 

 

Scheme 128 Synthesis of (4-[18F]fluorophenyl)acetylene by direct nucleophilic aromatic substitution 

with [18F]fluoride.334 

To demonstrate the application of (4-[18F]fluorophenyl)-acetylene in the synthesis 

of PET tracers, Roberts et al. reacted this building block with a variety of azide 

precursors (Scheme 129).334 Compounds 554 and 555 were formed in radiochemical 

yields of 67% and 56% (analytically determined) respectively. Unfortunately, overall 

non-decay corrected radiochemical yields, based on starting [18F]fluoride were low due 

to the low yielding synthesis of 4-([18F]fluorophenyl)acetylene 553a. 
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Scheme 129 ‘Click’-reaction with (4-[18F]fluorophenyl)acetylene.334 

A different approach towards the synthesis of ([18F]fluorophenyl)acetylenes was 

recently published by Krapf et al. (Scheme 130).335 Instead of a direct labelling approach, 

they reported a two-step method, consisting of first the synthesis of [18F]fluoro-

benzaldehydes 363a,b,k in 20–75% radiochemical yield (ndc) and subsequent Seyferth–

Gilbert Homologation towards ([18F]fluorophenyl)acetylenes 553a–c using the 

Bestmann–Ohira reagent in 40–60% radiochemical yield (ndc). 

 

Scheme 130 Synthesis of ([18F]fluorophenyl)acetylenes by Seyferth–Gilbert homologation.335 

The two step approach seems more promising than the direct approach employed 

by Roberts et al.,334 as exemplified by the overall radiochemical yield for (4-[18F]fluoro-

phenyl)acetylene of 26–45% instead of 14 ± 2%. For the purification of (4-

[18F]fluorophenyl)acetylene, Krapf et al. discovered that radiochemical purities of >98% 

can be achieved by distillation, thereby avoiding cumbersome HPLC purification.335 

Using small model substrates, it was demonstrated that these alkynes can 

participate successfully in (1) click reactions with various dipoles (RCY = 20–53%, 

determined analytically), (2) the Sonogashira reaction (RCY = 83%, determined 

analytically) and (3) alkyne trimerisation (RCY = 18%, determined analytically). As a 

proof of principle, (2-[18F]fluorophenyl)acetylene was reacted with azides in the click 
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reaction towards potential COX-2 PET tracer 559 and PSMA PET tracer 560 in a 

reasonable overall radiochemical yield of 30% and a short 60 min overall synthesis time 

(Scheme 131).335  

 

Scheme 131 Click reaction with (2-[18F]fluorophenyl)acetylene.335 

In summary, ([18F]fluorophenyl)acetylenes are a new class of building blocks with 

high versatility. The building blocks can be synthesised in decent radiochemical yields 

and reacted in cycloadditions as well as transition metal catalysed reactions. 

2.3.5.5 Synthesis and application of [18F]fluorophenyl substituted azides 

As is the case with [18F]fluorophenyl alkynes (Section 2.3.5.4), [18F]fluorophenyl 

substituted azides are also potentially interesting building blocks for use as reagents in 

the widely used Huisgen 1,3-dipolar cycloaddition (‘click’-reaction). Even more, because 

the aryl C–18F bond is usually more stable than the alkyl C–18F bond, it is even expected 

that tracers made by ‘click’-reaction using [18F]fluorophenyl substituted azides are less 

prone to in vivo defluorination than when the much more commonly used aliphatic 

[18F]fluoroethyl azide is used (Section 2.2.6.1). 

Although [18F]fluorophenyl substituted azides have interesting properties for the 

use as a reagent in click reactions, there are no recent publications on the use of these 

building blocks in the synthesis of small molecule PET tracers. The obvious reason is the 

challenge to synthesise these building blocks. The azide functional group is not a strong 

electron withdrawing group. Therefore, the synthesis of 2- and 4-[18F]fluorophenyl azide 

by conventional nucleophilic aromatic substitution with [18F]fluoride leads only to very 

low radiochemical yields.336 When the azide functional group is attached to the aromatic 

ring via an aliphatic chain, as in for example [18F]fluorobenzyl azides, the electron 

density on the aromatic ring is too high to allow successful conventional nucleophilic 

aromatic substitution. Because [18F]fluorophenyl substituted azides would be a valuable 
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addition to the radiochemist’s toolkit, various late-stage fluorination methods have 

recently been investigated for the synthesis of these building blocks. 

Chun et al. investigated the radiolabelling of diaryliodonium salt precursors 

towards [18F]fluorophenyl azides and [18F]fluorobenzyl azides (Scheme 132).337 For the 

synthesis of [18F]fluorophenyl azides 562a and 562b, the use of diaryliodonium salt 

precursors was unsuccessful, giving the desired building blocks only in low 

radiochemical yields. For the synthesis of [18F]fluorobenzyl azides 563a–c, moderate 

radiochemical yields were obtained for the ortho, meta and para isomers (39–45% RCY, 

analytically determined). 

 

Scheme 132 Synthesis of [18F]fluorophenyl azides and [18F]fluorobenzyl azides from iodonium salt 

precursors.337 

Another approach towards [18F]fluorophenyl substituted azides was reported by 

Rotstein et al. and Wang et al. They investigated the radiofluorination of spirocyclic 

hypervalent iodine(III) precursors (Scheme 133).5,338 Using this novel radiofluorination 

method, various [18F]fluorophenyl substituted azides could be formed in moderate to 

excellent radiochemical yields. To demonstrate the potential of these building blocks for 

the synthesis of PET tracers, Wang et al. showed that fluorine-18 labelled amino acid 

570 could be formed in 49% radiochemical yield (analytically determined) by the ‘click’-

reaction of building block 567 with alkyne modified precursor 569 (Scheme 134).333 

In conclusion, novel methodologies have recently become available to synthesise 

[18F]fluorophenyl substituted azide building blocks in moderate to good radiochemical 

yields, making this group of building blocks available for the synthesis of PET tracers. 
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Scheme 133 Synthesis of various [18F]fluorophenyl substituted azides from spirocyclic hypervalent 

iodine(III) precursors.5,338 

 

Scheme 134 Synthesis of fluorine-18 labelled amino acid 570 using [18F]fluorophenyl substituted azide 

building block 567.338 

2.2.5.6 Synthesis and application of tert-butyl 2-(4-[18F]fluorophenyl)azocarboxylate 

Fluorine-18 labelled azocarboxylic ester 572 is a novel building block developed by 

Fehler et al.339 This building block can be synthesised in one step by nucleophilic 

aromatic substitution of trimethylammonium triflate 571 with [18F]fluoride resulting in 

a radiochemical yield of 70%, because of the excellent electron withdrawing property of 

the azocarboxylic ester group at the para-position of the trimethylammonium leaving 

group (Scheme 135). 
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Scheme 135 Synthesis and application of [18F]4-fluorophenylazocarboxylic tert-butyl ester.339 

The application of this building block in radical arylations toward compounds 573 

resulted in reasonable radiochemical yields of 30–51% (analytically determined) with 

simple model substrates. Examples of more complex molecules resembling PET tracers 

however have not yet been published. The reaction of building block 575 with amines to 

amides is very promising, as shown by the quantitative conversion towards compound 

574 (Scheme 135) and the successful synthesis of dopamine D3 ligand 576 in an overall 

radiochemical yield of 20–24% (ndc) (Scheme 136).339 

In conclusion, this building block is a good candidate for the synthesis of various 

PET tracers, as it is easy to synthesise and reacts in high yields. As it is a fairly new 

building block, its potential needs to be further explored. 

 

Scheme 136 Application of [18F]4-fluorophenylazocarboxylic tert-butyl ester in the synthesis of 

dopamine-D3 ligand 576.339 
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2.2.5.7 Synthesis of 4-[18F]fluorophenol 

Various synthetic strategies towards 4-[18F]fluorophenol have already been published 

before 2010. These are however all challenging three-step low yielding procedures.340–344 

 

Scheme 137 Synthesis of 4-[18F]fluorophenol from iodonium salt precursors.345,346 

Recently, Ross et al. and Helfer et al. developed a novel two step synthesis of 4-

[18F]fluorophenol from iodonium salt precursors 577 and 578 (Scheme 137).345,346 

These iodonium salt precursors are benzyl protected phenols with the reactive iodonium 

salt at the 4-position. After radiofluorination, benzyl protected 4-[18F]fluorophenol 579 

is obtained, which is deprotected by hydrogenation to result in 4-[18F]fluorophenol. 

When microwave heating was used for the radiofluorination reaction, 4-[18F]fluoro-

phenol could be obtained in an overall synthesis times of 15 minutes with radiochemical 

yields of 52% (dc). The only disadvantage is that complex iodonium salt precursors need 

to be synthesised, which are somewhat unstable. 

Gao et al. developed a novel one-pot method starting from 4-tert-butyl precursors 

579.20 Via oxidative radiofluorination and using phenoliodine diacetate (PIDA), various 

4-[18F]fluorophenols were prepared in only 30 minutes overall synthesis time (Scheme 

138). The synthesis of 4-tert-butyl precursors is simpler than of the iodonium salt 

precursors, some of them are even commercially available. If the radiochemical yields 

can be further improved, this method will be highly valuable for the synthesis of 4-

[18F]fluorophenols. 

4-[18F]Fluorophenol has not been applied in the synthesis of new PET tracers. 

However with these novel methods, 4-[18F]fluorophenol becomes accessible as a 

fluorine-18 labelled building block and its application in the synthesis of PET tracers can 

therefore be expected in the future. 
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Scheme 138 Synthesis of 4-[18F]fluorophenols by oxidative fluorination of 4-tert-butyl phenols.20 

2.2.5.8 Synthesis and application of 4-[18F]fluorobenzyl alcohol 

4-[18F]Fluorobenzyl alcohol is most commonly used as intermediate in the synthesis of 

benzyl halides (Section 2.3.2.4). The direct use of 4-[18F]fluorobenzyl alcohol is only 

reported once in recent literature by Tominaga et al. in the synthesis of myocardial 

perfusion tracer 4-[18F]fluorobenzyltriphenylphosphonium bromide ([18F]FBnTP).347 

This tracer has been previously synthesised by Ravert et al. in 8.3 ± 1.4% (ndc) 

radiochemical yield in a synthesis time of 52 minutes by reaction of 4-[18F]fluorobenzyl 

bromide with triphenylphosphine.280 

 

Scheme 139 Application of [18F]4-fluorobenzyl alcohol in the synthesis of [18F]FBnTP.358 
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Tominaga et al. showed that [18F]FBnTP can also be synthesised by direct reaction 

of 4-[18F]fluorobenzyl alcohol with triphenylphosphine hydrobromide (Scheme 139) in 

an overall radiochemical yield of 12–14% (dc). In comparison, the radiochemical yield 

obtained by Ravert et al. was 8.3% (ndc), which converts to 11.5% (dc). Besides the 

similar radiochemical yields, both methods use SPE purifications in the building block 

synthesis and a final HPLC purification of the tracer. Therefore, there seems no 

significant preference for either method in the synthesis of [18F]FBnTP. 

2.4 Conclusion and future perspectives 

The interest in the development of novel fluorine-18 labelled PET tracers has 

increased significantly over the last two decades. For the synthesis of these tracers, 

radiochemists prefer late stage radiofluorination reactions for various reasons. The use 

of building blocks is however still of significant importance. Besides the use of fluorine-

18 labelled building blocks for the modular build-up of PET tracers, which cannot be 

obtained via direct radiofluorination, several aromatic and aliphatic fluorine-18 labelled 

building blocks have been developed for generic applications. As such, fluorine-18 

labelled building blocks are a good alternative to late stage radiofluorination. For 

example, building blocks which have been proven valuable due to their simple, easy to 

automate synthesis and effective reaction with precursors are the alkylating agents 

[18F]fluoroethyl bromide, [18F]FETos and ‘click’-reagent [18F]fluoroethyl azide. These 

three building blocks account, since 2010, for the synthesis of more than 120 PET 

tracers. A building block which has proven to be very useful due to its versatility is 4-

[18F]fluorobenzaldehyde, as it has been applied as prosthetic group in at least five 

different types of coupling chemistry as well as in various multicomponent reactions.  

N-Succinimidyl-4-[18F]fluorobenzoate has proven to be valuable as one of the most 

selective building blocks, as it reacts rather selectively with primary amines. 

Other building blocks are less broadly applied, but still find applications in the 

synthesis of PET tracers. Many aromatic building blocks are for example used in the 

development of PET tracers which cannot be synthesised easily by late-stage 

radiofluorination. Although the overall yields via the building block approach can be low 

due to a challenging building block synthesis or low yielding subsequent reactions, the 

final PET tracer is often produced in sufficient yields for initial preclinical studies. 

Various aliphatic building blocks are used as an alternative to [18F]fluoroethyl halides 

and sulfonates to improve the biological characteristics of the PET tracer by modifying 

the chain length and chain structure. For the synthesis of PET tracers which are difficult 

to obtain by late-stage radiofluorination as well as the synthesis of PET tracer derivatives 

with improved biological activity, an elaborate toolkit is required which contains many 

different types of building blocks. With that perspective in mind, it is clear that the 
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current set of building blocks available to the radiochemist is still rather limited and 

further expansion to allow the introduction of fluorine-18 at any desired position in any 

molecule is highly desired. 

It should be noted that nowadays novel late-stage radiofluorination chemistry also 

provides radiochemists with opportunities to develop and access a larger variety of 

structurally diverse PET tracers that were previously only accessible by elaborate 

multistep fluorine-18 building block chemistry. These novel late-stage radiofluorination 

chemistry methods significantly increase the tools available for PET tracer synthesis. 

Nevertheless, despite these recent developments, it is still not possible to access and 

develop every desired PET tracer. Precursors can be difficult to synthesise and may not 

be very stable, the functional group tolerance and scope can still be too limited, and the 

reaction conditions for the fluorine-18 labelling reactions are often still harsh. It is 

therefore very likely that the building blocks described in this review, that have proven 

to be particularly successful and are widely applied, will not be replaced by late-stage 

radiofluorination chemistry, but will remain important in the radiochemists toolkit. 

In conclusion, this review shows that building blocks are vital tools for 

radiochemists and will continue to be important in the future of PET tracer development, 

as complementary techniques to late-stage radiofluorination methods. 
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A new strategy towards [18F]trifluoromethyl-containing compounds is developed. 
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3.1 Introduction 

Positron emission tomography (PET) is a powerful molecular imaging technique that can 

visualise biological processes in vivo.1,2 Today, PET has proven to be a valuable tool for 

the detection, characterisation and monitoring of diseases and for the investigation of 

the efficacy of pharmaceuticals. Therefore, there is a continuous need for effective 

positron-emitting tracers that specifically interact in the biological processes of 

interest.3-7  

The development of a PET-tracer usually starts from a known biologically active 

compound by replacing one of the carbon, nitrogen, oxygen or fluorine atoms by its 

radioactive isotope. Synthesis of such compounds is challenging due to the short physical 

half-life of these isotopes (11C t1/2 = 20 min, 13N t1/2 = 10 min, 15O t1/2 = 2 min, 18F t1/2 = 

110 min). In general, the introduction of the isotope and subsequent purification and 

analysis of the tracer has to be finalised within 3 half-lives. Consequently, robust, reliable 

and rapid chemical procedures are essential for succes.8-12 

Many pharmaceuticals contain a trifluoromethyl (CF3) functional group. The CF3 

group is incorporated into drug candidates to improve their binding selectivity, 

lipophilicity, and metabolic stability.13,14 [18F]CF3-containing compounds are however 

rare because only limited synthetic approaches are available. Of the various fluorine-18 

sources, only [18F]fluoride is available at most cyclotron sites, and therefore reactions 

using this fluorine-18 source are especially of interest. Albeit, only a handful of pro-

cedures using nucleophilic [18F]fluoride to prepare [18F]trifluoromethylated compounds 

have been reported.15-21 Published methods employ the direct reaction of [18F]fluoride 

with electrophiles, like difluorobromomethyl- or gem-difluoro-alkenyl containing 

compounds (Scheme 1).  

 

Scheme 1 Reported reactions of [18F]fluoride with: a) difluorobromomethyl15-19 and b) gem-

difluoroalkenyl20,21 precursors. 

These methods do generate the [18F]trifluoromethyl group in a single synthetic step, 

but with limited success. Simple substrates react in up to 93% yield, however, the 

labelling of more complex structures results in very low yields (<15%).15-21 Moreover, 

precursors containing the difluorobromomethyl- or gem-difluoroalkenyl functional 
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group are hard to obtain by commercial sources or synthetic methods. A major limitation 

of the reaction with the gem-difluoroalkenyl group is that it actually yields a [18F]2,2,2-

trifluoroethyl group. Trifluoromethyl aryls, for example, can therefore not be obtained 

via this method. 

In this chapter, we present a novel approach to synthesise radiopharmaceuticals 

containing a CF3 group via nucleophilic trifluoromethylation using [18F]trifluoromethane.  

3.2 Results and discussion 

During initial studies, we discovered that the reaction of difluoroiodomethane with 

[18F]fluoride/kryptofix-2.2.2 in acetonitrile provided [18F]trifluoromethane in a satis-

factory 60 ± 15% yield in 10 minutes reaction time at room temperature (Scheme 2). 

[18F]trifluoromethane could be easily isolated by purging it out of the reaction mixture 

using a flow of helium. The gaseous [18F]trifluoromethane was separated from any 

gaseous difluoroiodomethane precursor by leading it through a silica column and 

trapping the product in either DMF at -60 °C with a 88 ± 8% efficiency or in THF at  

-100 °C with a 96 ± 3% efficiency in 3 minutes. HPLC analysis of the obtained 

[18F]trifluoromethane solution showed no radioactive or UV-active impurities. 

 

Scheme 2 Synthesis of [18F]trifluoromethane. 

The time needed for the synthesis of [18F]trifluoromethane, which includes 

azeotropic drying of [18F]fluoride/kryptofix-2.2.2 and subsequent reaction and purify-

cation, takes about 30 minutes. This leaves enough time for a follow up reaction, and 

therefore the applicability of [18F]trifluoromethane was further investigated. 

 

Scheme 3 Reaction pathways of the trifluoromethyl anion. 
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In order to use [18F]trifluoromethane in nucleophilic trifluoromethylations, it needs 

to be deprotonated first. It is known that deprotonation of “cold” trifluoromethane in 

THF yields a trifluoromethyl anion that decomposes to difluorocarbene and fluoride 

(Scheme 3).7 Deprotonation in DMF however, results in a trifluoromethyl anion 

stabilised as the corresponding gem-aminoalcoholate. Using this method, aldehydes and 

ketones undergo reactions with trifluoromethane to form the corresponding trifluoro-

carbinols in high yields.22,23 The trifluoromethylation of a carbonyl group may proceed 

via two distinct pathways (Scheme 3). Either the trifluoromethyl anion attacks directly 

the electrophilic carbonyl group, where the gem-aminoalcoholate only acts as a 

temporary reservoir of the trifluoromethyl anion, or the gem-aminoalcoholate formed in 

DMF reacts with the carbonyl group.  

 

Figure 1 Analysis of the reaction of [18F]HCF3 with benzophenone by radio-HPLC. a) Investigation of the 

influence of the DMF concentration on the formation of [18F]trifluorocarbinol 2a; b) Determination of 

the reaction products in THF; c) Determination of the reaction products in THF with 10% DMF. 

When fluorine-18 is used in a reaction the resulting products and reactants can 

easily be monitored with HPLC and a radioactivity detector. With such an analytical set-

up, reaction progress is easily followed and we decided to investigate the mechanism of 



 
Efficient synthesis of [18F]trifluoromethane and its application in the synthesis of PET tracers 

183 

trifluoromethylation of carbonyls using [18F]trifluoromethane in more detail. The 

reaction of [18F]trifluoromethane and benzophenone was selected as a model reaction, 

because initial experiments showed that benzophenone reacts cleanly to the corre-

sponding [18F]trifluorocarbinol 2a. First the trifluoromethylation reaction using 

[18F]trifluoromethane and KOtBu (100 mM) (5 min at 20 °C) at various concentrations of 

benzophenone was investigated in THF that contained various percentages of DMF 

(Figure 1a). 

Surprisingly, the reaction in neat THF yielded the desired product 2a in up to 86%. 

However, to achieve this, a high concentration of benzophenone (500 mM) was required. 

This demonstrates that the trifluoromethyl anion can react directly with benzophenone 

(pathway I). However, at low benzophenone concentrations, the yield of 2a decreased 

and decomposition of the trifluoromethyl anion led to the formation of [18F]fluoride. In 

this case, the presence of 50% of DMF led to a tremendous increase in product yield. 

Apparently, the direct reaction pathway I is very slow at these concentrations and 

pathway II via the gem-aminoalcoholate comes more into play at increasing DMF 

concentrations. In these reactions, [18F]fluoride was also not found as a by-product, but 

[18F]fluoral hydrate was detected instead. This can be attributed to protonation of the 

gem-aminoalcoholate intermediate in the acidic HPLC eluent (Scheme 4) and therefore 

can be used to quantify the amount of gem-aminoalcoholate present in the reaction 

mixture.  

 

Scheme 4 Formation of [18F]fluoral hydrate in the HPLC eluent. 

The absence of [18F]fluoride indicates that the gem-aminoalcoholate does not act as 

a trifluoromethyl anion reservoir, but reacts directly in a conserted reaction with the 

substrate. If the gem-aminoalcoholate is in equilibrium with the trifluoromethyl anion, at 

least some [18F]fluoride should have been formed.  

 

Scheme 5 [18F]trifluoromethylation using [18F]HCF3. 
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To investigate the scope of the [18F]trifluoromethylation reaction discussed above, 

various benzaldehydes 1, acetophenones 3 and benzophenones 5 (for R2 see table 1-3) 

containing electron withdrawing and donating groups (Scheme 5) were selected as the 

electrophilic reaction partners. 

Table 1 Trifluoromethylation of benzophenones 1.a 

Entry R2 Substrate 
(µmol) 

KOtBu 

(µmol) 

Product Radiochemical 
conversion (%) 

1 H 10 20 [18F]2a >99 

2 4-OMe 10 20 [18F]2b 16 

3 4-OMe 10 30 [18F]2b >99 

4 4-CF3 10 20 [18F]2c 99 

5 4-F 10 20 [18F]2d >99 

6 4-NO2 10 20 [18F]2e 1 

7 4-NO2 10 50 [18F]2e 96 

8 3-NO2 10 20 [18F]2f 30 

9 3-NO2 10 50 [18F]2f 74 

a Reaction conditions: 1 mL DMF, 20 oC, 5 minutes. 

 

Reaction with substituted benzophenones 1 provided the expected products in 

excellent yields (Table 1). The synthesis of [18F]2b (R2 = 4-OMe), [18F]2e (R2 = 4-NO2) 

and [18F]2f (R2 = 3-NO2) required although an increasing concentration of KOtBu. Under 

the low yielding reaction conditions, unreacted [18F]trifluoro-methane was still present, 

because the substrates had degraded (as shown by UV-HPLC analysis).  

Table 2 Trifluoromethylation of acetophenones 3.a 

Entry R2 Substrate 
(µmol) 

KOtBu 

(µmol) 

Product Radiochemical 

conversion (%) 

1 H 100 150 [18F]4a 41 

2 4-OMe 100 150 [18F]4b 44 

3 4-CF3 100 150 [18F]4c 22 

4 4-F 100 150 [18F]4d 36 

5 4-NO2 100 150 [18F]4e 0 

6 3-NO2 100 150 [18F]4f 0 

a Reaction conditions: 1 mL DMF, 20 oC, 5 minutes. 
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High base concentrations probably led to faster deprotonation and reaction of  

[18F]trifluoromethane with the substrates, before degradation of the substrate occurred. 

In the case of acetophenones 3, enolate formation was expected under the applied 

reaction conditions, which would lead to a decreased availability of reactive ketone. 

Indeed, higher base and precursor concentrations were required to obtain the products 

in satisfactory yields (Table 2).  

In these reactions, also no radioactive by-products were formed and in the 

synthesis of [18F]4e (R2 = 4-NO2) and [18F]4f (R2 = 3-NO2) only unreacted [18F]trifluoro-

methane was observed. Substrate degradation, as was observed by UV-HPLC, caused by 

the strong basic conditions probably led to low yields. 

Table 3 Trifluoromethylation of benzaldehydes 5.a 

Entry R2 Substrate 
(µmol) 

KOtBu 

(µmol) 

Product Radiochemical 

conversion (%) 

1 H 100 150 [18F]4a 41 

2 4-OMe 100 150 [18F]4b 44 

3 4-CF3 100 150 [18F]4c 22 

4 4-F 100 150 [18F]4d 36 

5 4-NO2 100 150 [18F]4e 0 

6 3-NO2 100 150 [18F]4f 0 

a Reaction conditions: 1 mL DMF, 20 oC, 5 minutes. 

 

Benzaldehydes 5 reacted in a moderate to high yield with [18F]trifluoromethane 

(Table 3). Also here a positive effect of an increasing KOtBu concentration on the product 

yield was observed. Most reactions didn’t yield by-products, except for the synthesis of 

[18F]6e. In that case not [18F]6e, but [18F]8 was formed (Scheme 6). This may be 

explained by nucleophilic attack of the tert-butoxide anion on the precursor 4-nitro-

benzaldehyde 5e (Scheme 6) resulting in 4-t-butoxy-benzaldehyde 7 which sub-

sequently reacts with [18F]trifluoromethane to form [18F]1-(4-(tert-butoxy)phenyl)-

2,2,2-trifluoroethanol 8. 

 

Scheme 6 Major by-product formation in the reaction of 5e with [18F]HCF3
-. 
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3.3 Conclusions 

In summary, [18F]trifluoromethane can be prepared in high yield in a short synthesis 

time and undergoes smooth reaction with various aromatic aldehydes and ketones to 

give [18F]trifluoromethylcarbinols in reasonable to good yields. Substrate stability seems 

to be the most important factor to obtain high product yields. We are currently 

investigating the use of [18F]trifluoromethane towards other products (trifluoromethyl-

thioethers, trifluoromethylarenes) and towards the synthesis of [18F]TMSCF3, a milder 

reagent for trifluoromethylation reactions. 

3.4 Materials and methods 

3.4.1 General 

All chemicals, including reference compounds 2,2,2-trifluoro-1-diphenylethanol 2a, 

1,1,1-trifluoro-2-phenylpropan-2-ol 4b and 2,2,2-trifluoro-1-phenylethanol and all 

precursors were obtained from commercial suppliers and were used without further 

purification, except for the precursors 4-nitrobenzaldehyde, 4-fluorobenzaldehyde and 

4-(trifluoromethyl)-benzaldehyde, which were further purified by distillation or 

sublimation. THF was distilled from lithium aluminium hydride, all other solvents were 

dried on 3Å molecular sieves. 1H, 13C and 19F NMR spectra were recorded on a Bruker 

Avance 250 (1H = 250.13 MHz, 13C = 60.90 MHz, 19F = 235.33 MHz) instrument, where 

spectra were recorded at a temperature of 25 °C. Chemical shifts (δ) are given in ppm, 

internally referenced to residual solvent resonances (1H: δ = 7.26 ppm, 13C: δ = 77.0 

ppm). Thin Layer Chromatography was performed using TLC plates from Merck (SiO2, 

neutral kieselgel 60 on alumina with a 254 nm fluorescence indicator). Compounds on 

the TLC plate were visualised by 254 nm UV light. Flash column chromatography was 

performed with Screening Devices 60Å silica gel. Analytical HPLC was done on a HPLC 

system consisting of a Jasco PU-1580 pump, a Jasco UV-2075 Plus UV/Vis detector set at 

a wavelenght of 254 nm, a Scionex 51BP 51/2 NaI radioactivity detector, a Raytest Gina 

data acquisition and control interface and a Grace AlltimaTM C18 5u 250mm x 4.6mm 

column using a 70:30:0.2 MeCN/H2O/TFA eluent at a flow of 1 mL/min. Radioactivity 

was quantified with a Veenstra VDC-304 dose calibrator. 

3.4.2 Synthesis of [18F]trifluoromethane 

[18F]fluoride was produced by the 18O(p,n)18F nuclear reaction using an IBA 18/9 

cyclotron. After irradiation, [18F]fluoride was trapped on a Chromafix® 30-PS-HCO3 18F 

separation cartridge and eluted to a reaction vessel using a solution of Kryptofix K2.2.2 (13 

mg) and K2CO3 (2 mg) in MeCN/H2O (1 mL, ratio 9:1). The solution was dried under a 

stream of Helium and reduced pressure at 90 oC. Residual water was removed by 
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azeotropic co-evaporation using three portions of anhydrous MeCN (3 times 1 mL). 

Difluoroiodomethane (8 mg, 7.1 µmol) dissolved in MeCN (1 mL) was added to the dry 

[18F]fluoride and was allowed to stand at room temperature for 10 minutes. Using a 

helium flow of 10 mL/min, the formed [18F]trifluoromethane (60% ± 15% yield) was 

purged out of the reaction mixture, through a Waters Sep-Pak® Plus Silica cartridge and 

trapped in DMF (1 mL, -60 oC) or THF (1 mL, -100 oC) in an efficiency of 88 ± 8% and 

96% ± 3% respectively in 3 minutes.  

3.4.3 Detailed analysis of separation of [18F]trifluoromethane from 

difluoroiodomethane 

To purify gaseous [18F]trifluoromethane from any gaseous difluoroiodomethane 

precursor, a stream of helium (10 mL/min) was led through a Waters Sep-Pak® Plus 

Silica cartridge as described in the previous section. The boiling points of [18F]trifluoro-

methane (-82.1 °C) and difluoroiodomethane (21.6 °C) are far enough apart that the 

silica column can separate the gasses (silica column acts as a small room temperature 

gas chromatograph).  

To demonstrate the efficiency of the Waters Sep-Pak® Plus Silica cartridge, Helium 

was bubbled (10 mL/min) through a vessel containing 1 mL of a 0.04M difluoro-

iodomethane solution in MeCN and trapped in a second vessel containing 1 mL THF at -

60 °C for 3 minutes or for 6 minutes. For entry 1 (3 minutes from start) and 3 (6 minutes 

from start) of table 4, a Waters Sep-Pak® Plus Silica cartridge was placed before the 

second vessel and for entry 2 (3 minutes from start) and 4 (6 minutes from start) of table 

4 no Waters Sep-Pak® Plus Silica cartridge was placed before the second vessel. The 

distillate was analysed using UV-HPLC, which can detect difluoroiodomethane at 250 nm 

with a detection limit of 10 µM. All experiments were performed in triplicate. The results 

are shown in Table 4. 

Table 4 Efficacy of a Waters Sep-Pak® Plus Silica cartridge. 

Entry Time (min) Silica Sep-Pak CHF2I (µM) CHF2I (%) 

1 3.0 YES <10 <0.03 

2 3.0 NO 267 ± 42 0.67 

3 6.0 YES 31 ± 20 0.08 

4 6.0 NO 461 ± 215 1.15 

 

The concentration of difluoroiodomethane, when using a Silica Sep-Pak, is under the 

HPLC detection limit of 10 µM for the 3.0 minutes distillation and is 31 µM for the 6.0 

minutes distallation. Fortunately, 3.0 minutes is sufficient to transport al the 
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[18F]trifluoromethane and therefore the [18F]trifluoromethane stock solution will contain 

less than 10 nanomol of difluoroiodomethane using 1 mL THF to trap [18F]trifluoro-

methane. These amounts will not interfere in the labelling reactions. When no Silica Sep-

Pak is used (entry 2 & 4), the difluoroiodomethane concentration is 267 µM after 3.0 

minutes and 461 µM 6.0 minutes of distillation, showing that the silica Sep-Pak is 

actually effectively separating [18F]trifluoromethane from its precursor difluoroiodo-

methane. 

3.4.4 General procedure for the synthesis of [18F]trifluoromethylcarbinols 

To a reaction vessel was added either benzophenone 1a-f, acetophenone 3a-f, or 

benzaldehyde 5a-f, followed by DMF, [18F]CHF3 in DMF and 0.2M KOtBu in DMF up to a 

total volume of 1 mL. The reaction was stirred for 5 minutes at 20 °C for benzophenones 

1 and benzaldehydes 3, or at 80 °C for acetophenones 5. The reaction mixture was ana-

lysed by injecting 1 μL of it directly on analytical HPLC. 

The HPLC chromatograph in Figure 2 shows the result of the reaction of 

[18F]trifluoromethane with benzaldehyde. The radio chromatograph shows that the peak 

of [18F]trifluoromethane at 4.23 min has disappeared and a new peak has formed at 6.27 

min. To identify this peak as [18F]2,2,2-trifluoro-1-phenylethanol, the cold reference 

compound was injected on HPLC under the same conditions. 

 

Figure 2 radioHPLC of the synthesis of [18F]2,2,2-trifluoro-1-phenylethanol 

Figure 3 HPLC-UV (254 nm) chromatogram of cold reference 2,2,2-trifluoro-1-phenylethanol 
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Figure 3 shows that the reference compound forms a peak at 5.90 minutes. There is 

a time difference between detection on the UV detector and the radioactivity detector of 

0.37 minutes. Therefore, the radioactive product has the same retention on the HPLC 

column as the 2,2,2-trifluoro-1-phenylethanol reference and can be positively identified 

to be [18F]2,2,2-trifluoro-1-phenylethanol. 

3.4.5 Formation and identification of [18F]fluoral hydrate 

After addition of KOtBu (100 µmol) to a solution of [18F]CHF3 in DMF (1 mL), HPLC 

analysis showed conversion of [18F]CHF3 (Rt: 4.27 min) towards a new radioactive peak 

(Rt: 3.38 min), most probably [18F]fluoral hydrate, formed from the intermediate gem-

aminoalcoholate II upon quenching in the HPLC eluent. To identify the radioactive peak 

as [18F]fluoral hydrate, the reaction mixture was co-injected on HPLC with 30 µmol non-

radioactive fluoral hydrate and the radioactive peak with Rt 3.38 min was collected. 19F-

NMR analysis of the collected peak positively identified the radioactive peak to be 

[18F]fluoral hydrate. 

3.4.6 Synthesis of the reference trifluoromethylcarbinols 

All reference compounds were synthesised by following the method published by 

Prakash et al.24 The TMS-ether trifluorocarbinol derivatives were synthesised first, 

followed by hydrolysis by either 1M TBAF in THF or 1M HCl in 1:1 H2O / THF. Further 

experimental details for every reference compound are described on the following pages. 

2,2,2-trifluoro-1-(4-methoxyphenyl)-1-phenylethanol (2b):  

To a solution of 4-methoxybenzophenone (250 mg, 1.18 mmol) in DMF (3 mL) was 

added TMSCF3 (517 μL, 3.50 mmol) and K2CO3 (50.0 mg, 0.36 mmol). After stirring at 

room temperature for 42 hours, H2O was added (40 mL) and the mixture was extracted 

with Et2O (3 x 20 mL). The combined organic layers were washed with H2O (2 x 60 mL), 

dried over Na2SO4, filtered and concentrated in vacuo. The crude TMS ether was purified 

by flash column chromatography (silicagel, EtOAc / n-Hexane 1:99) and hydrolysed by 

adding THF (3 mL) and TBAF (3 mL, 1M in THF, 3 mmol). After stirring at room 

temperature for 3 hours, H2O (40 mL) was added and the mixture was extracted with 

Et2O (3 x 20 mL). The combined organic layers were washed with H2O (2 x 60 mL), dried 

over Na2SO4, filtered and concentrated in vacuo. The crude product was purified by flash 

column chromatography (silicagel, EtOAc / n-Hexane 1:9) to yield 2b as a colourless oil 

(37 mg, 11%). 1H NMR (250 MHz, CDCl3) δ (ppm): 7.53 - 7.46 (m, 2H), 7.44 - 7.31 (m, 

5H), 6.92 - 6.82 (m, 2H), 3.81 (s, 3H), 2.77 (s, 1H); 19F NMR (235 MHz, CDCl3) δ (ppm): -

74.5 (s, 3F); 13C NMR (63 MHz, CDCl3) δ (ppm): 159.8, 139.7, 131.7, 129.0, 128.7, 128.3, 

127.6, 125.5 (q, 1JCF = 286.3 Hz), 113.7, 79.4 (q, 1JCF = 29.0 Hz), 55.4, HPLC retention time: 
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11.32 min. Synthesis and analysis of this compound is described previously by White et 

al.25 

2,2,2-trifluoro-1-(4-(trifluoromethyl)phenyl)-1-phenylethanol (2c):  

To a solution of 4-(trifluoromethyl)benzophenone (212 mg, 0.85 mmol) in DMF (3 mL) 

was added TMSCF3 (222 μL, 1.50 mmol) and K2CO3 (14 mg, 0.1 mmol). After stirring at 

room temperature for 72 hours, TBAF (3 mL, 1M in THF, 3 mmol) was added to 

hydrolyse the intermediate TMS ether. After stirring at room temperature for 3 hours, 

H2O (40 mL) was added and the mixture was extracted with Et2O (3 x 20 mL). The 

combined organic layers were washed with H2O (2 x 60 mL), dried over Na2SO4, filtered 

and concentrated in vacuo. The crude product was purified by flash column 

chromatography (silicagel, EtOAc / n-Hexane 1:9) to yield 2c as a pale-yellow oil (171 

mg, 63%). 1H NMR (250 MHz, CDCl3) δ (ppm): 7.63 (br. s, 4H), 7.54 - 7.43 (m, 2H), 7.43 - 

7.34 (m, 3H); 19F NMR (235 MHz, CDCl3) δ (ppm): -62.8 (s, 3F), -74.3 (s, 3F); 13C NMR (63 

MHz, CDCl3) δ (ppm): 143.1, 139.0, 131.0 (q, 2JCF = 32.6 Hz), 129.2, 128.8, 128.2, 127.4, 

125.3 (q, 3JCF = 3.4 Hz), 125.2 (q, 1JCF = 286.3 Hz), 124.1 (q, 1JCF = 272.1 Hz), 79.5 (q, 2JCF = 

29.0 Hz), HPLC retention time: 21.32 min. Synthesis of this compound is described 

previously by Liu et al.26 

2,2,2-trifluoro-1-(4-fluorophenyl)-1-phenylethanol (2d):  

To a solution of 4-fluorobenzophenone (212 mg, 1.00 mmol) in DMF (3 mL) was added 

TMSCF3 (222 μL, 1.50 mmol) and K2CO3 (14 mg, 0.1 mmol). After stirring at room 

temperature for 96 hours, TBAF (3 mL, 1M in THF, 3 mmol) was added to hydrolyse the 

intermediate TMS ether. After stirring at room temperature for 3 hours, H2O (40 mL) 

was added and the mixture was extracted with Et2O (3 x 20 mL). The combined organic 

layers were washed with H2O (2 x 60 mL), dried over Na2SO4, filtered and concentrated 

in vacuo. The crude product was purified by flash column chromatography (silicagel, 

EtOAc / n-Hexane 1:9) to yield 2d as a pale-yellow oil (134 mg, 50%). 1H NMR (250 MHz, 

CDCl3) δ (ppm): 7.55 - 7.42 (m, 4H), 7.41 - 7.32 (m, 3H), 7.11 - 6.97 (m, 2H), 2.83 (s, 1H); 

19F NMR (235 MHz, CDCl3) δ (ppm): -74.5 (s, 3F), -113.1 (s, 1F); 13C NMR (63 MHz, CDCl3) 

δ (ppm): 162.9 (d, 1JCF = 248.2 Hz), 139.4, 135.2 (d, 4JCF = 3.2 Hz), 129.7 (d, 3JCF = 7.4 Hz), 

129.0, 128.6, 127.4, 125.4 (q, 1JCF = 286.8 Hz), 115.3 (d, 2JCF = 21.6 Hz), 79.3 (q, 2JCF = 29.0 

Hz), HPLC retention time: 12.72 min. Synthesis of this compound and 19F-NMR analysis is 

described previously by Dayal et al.27 

2,2,2-trifluoro-1-(4-nitrophenyl)-1-phenylethanol (2e):  

To a solution of 4-nitrobenzophenone (227 mg, 1.00 mmol) in DMF (3 mL) was added 

TMSCF3 (222 μL, 1.50 mmol) and K2CO3 (14 mg, 0.1 mmol). After stirring at room 

temperature for 3 hours, TBAF (3 mL, 1M in THF, 3 mmol) was added to hydrolyse the 
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intermediate TMS ether. After stirring at room temperature for 15 minutes, H2O (40 mL) 

was added and the mixture was extracted with Et2O (3 x 20 mL). The combined organic 

layers were washed with H2O (2 x 60 mL), dried over Na2SO4, filtered and concentrated 

in vacuo. The crude product was two times purified by flash column chromatography 

(silicagel, EtOAc / n-Hexane 1:4) to yield 2e as a pale-yellow crystals (99 mg, 33%). 1H 

NMR (250 MHz, CDCl3) δ (ppm): 8.28 - 8.14 (m, 2H), 7.70 (d, 3J = 8.5 Hz, 2H), 7.53 - 7.35 

(m, 5H), 2.98 (s, 1H); 19F NMR (235 MHz, CDCl3) δ (ppm): -74.2 (s, 3F); 13C NMR (63 MHz, 

CDCl3) δ (ppm): 148.0, 145.9, 138.6, 129.4, 128.9, 128.8, 127.2, 123.4, 125.0 (q, 1JCF = 

286.3 Hz), 79.4 (q, 2JCF = 29.0 Hz), HPLC retention time: 12.18 min. Synthesis and analysis 

of this compound is described previously by Prakash et al.28 

2,2,2-trifluoro-1-(3-nitrophenyl)-1-phenylethanol (2f):  

To a solution of 3-nitrobenzophenone (227 mg, 1.00 mmol) in DMF (3 mL) was added 

TMSCF3 (222 μL, 1.50 mmol) and K2CO3 (14 mg, 0.1 mmol). After stirring at room 

temperature for 72 hours, TBAF (3 mL, 1M in THF, 3 mmol) was added to hydrolyse the 

intermediate TMS ether. After stirring at room temperature for 3 hours, H2O (40 mL) 

was added and the mixture was extracted with Et2O (3 x 20 mL). The combined organic 

layers were washed with H2O (2 x 60 mL), dried over Na2SO4, filtered and concentrated 

in vacuo. The crude product was purified by flash column chromatography (silicagel, 

EtOAc / n-Hexane 1:4) to yield 2f as a pale-yellow crystals (196 mg, 66%). 1H NMR (250 

MHz, CDCl3) δ (ppm): 8.43 (s, 1H), 8.25 - 8.20 (m, 1H), 7.84 - 7.76 (m, 1H), 7.54 (t, 3J = 8.1 

Hz, 1H), 7.50 - 7.37 (m, 5H), 3.00 (s, 1H); 19F NMR (235 MHz, CDCl3) δ (ppm): -74.3 (s, 

3F); 13C NMR (63 MHz, CDCl3) δ (ppm): 148.2, 141.3, 138.5, 133.8, 129.4, 129.3, 128.9, 

127.2, 123.7, 122.7, 125.0 (q, 1JCF = 282.7 Hz), 79.1 (q, 2JCF = 29.4 Hz), HPLC retention 

time: 11.87 min. 

1,1,1-trifluoro-2-(4-methoxyphenyl)propan-2-ol (4b):  

To a solution of 4’-methoxyacetophenone (150 mg, 1.00 mmol) in DMF (3 mL) was 

added TMSCF3 (500 μL, 3.38 mmol) and K2CO3 (50.0 mg, 0.36 mmol). After stirring at 

room temperature for 24 hours, H2O was added (40 mL) and the mixture was extracted 

with Et2O (3 x 20 mL). The combined organic layers were washed with H2O (2 x 60 mL), 

dried over Na2SO4, filtered and concentrated in vacuo. The crude TMS ether was purified 

by flash column chromatography (silicagel, EtOAc / n-Hexane 1:99) and hydrolysed by 

adding TBAF (3 mL, 1M in THF, 3 mmol). After stirring at room temperature for 19 

hours, H2O (40 mL) was added and the mixture was extracted with Et2O (3 x 20 mL). The 

combined organic layers were washed with H2O (2 x 60 mL), dried over Na2SO4, filtered 

and concentrated in vacuo. The crude product was purified by flash column 

chromatography (silicagel, EtOAc / n-Hexane 15:85) to yield 4b as a yellow oil (20 mg, 
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9%). 1H NMR (250 MHz, CDCl3) δ (ppm): 7.55 - 7.44 (m, 2H), 6.96 - 6.87 (m, 2H), 3.82 (s, 

3H), 2.41 (s, 1H), 1.77 (s, 3H); 19F NMR (235 MHz, CDCl3) δ (ppm): -81.2 (s, 3F); 13C NMR 

(63 MHz, CDCl3) δ (ppm): 159.9, 130.7, 127.6, 125.8 (q, 1JCF = 285.0 Hz), 113.8, 74.7 (q, 

2JCF = 29.4 Hz), 55.4, 24.0, HPLC retention time: 6.32 min. Synthesis and analysis of this 

compound is described previously by Amyes et al.29 

1,1,1-trifluoro-2-(4-(trifluoromethyl)phenyl)propan-2-ol (4c):  

To a solution of 4’-(trifluoromethyl)acetophenone (564 mg, 3.00 mmol) in DMF (10 mL) 

was added TMSCF3 (665 μL, 4.50 mmol) and K2CO3 (41 mg, 0.1 mmol). After stirring at 

room temperature for 22 hours, H2O was added (40 mL) and the mixture was extracted 

with Et2O (3 x 20 mL). The combined organic layers were washed with H2O (2x 60 mL), 

dried over Na2SO4, filtered and concentrated in vacuo. The crude TMS ether was 

hydrolysed by adding THF (10 mL) and 1M HCl (10 mL). After stirring at room 

temperature for 24 hours, H2O (40 mL) was added and the mixture was extracted with 

Et2O (3 x 20 mL). The combined organic layers were washed with H2O (2 x 60 mL), dried 

over Na2SO4, filtered and concentrated in vacuo. The crude product was purified by flash 

column chromatography (silicagel, EtOAc / n-Hexane 15:85) to yield 4c as a yellow oil 

(312 mg, 40%). 1H NMR (250 MHz, CDCl3) δ (ppm): 7.83 - 7.57 (m, 4H), 2.43 (s, 1H), 1.81 

(s, 3H); 19F NMR (235 MHz, CDCl3) δ (ppm): -62.8 (s, 3F), -80.9 (s, 3F); 13C NMR (63 MHz, 

CDCl3) δ (ppm): 142.6, 131.1 (q, 2JCF = 32.6 Hz), 126.9, 125.6 (q, 1JCF = 285.0 Hz), 125.4 (q, 

3JCF = 3.7 Hz), 124.2 (q, 1JCF = 272.5 Hz), 75.0 (q, 2JCF = 29.4 Hz), 23.8, HPLC retention time: 

11.07 min. Synthesis and analysis of this compound is described previously by Liu et al.26 

1,1,1-trifluoro-2-(4-fluorophenyl)propan-2-ol (4d):  

To a solution of 4’-fluoroacetophenone (414 mg, 3.00 mmol) in DMF (10 mL) was added 

TMSCF3 (665 μL, 4.50 mmol) and K2CO3 (41 mg, 0.1 mmol). After stirring at room 

temperature for 96 hours, H2O was added (40 mL) and the mixture was extracted with 

Et2O (3 x 20 mL). The combined organic layers were washed with H2O (2 x 60 mL), dried 

over Na2SO4, filtered and concentrated in vacuo. The crude TMS ether was hydrolysed by 

adding THF (10 mL) and 1M HCl (10 mL). After stirring at room temperature for 72 

hours, H2O (40 mL) was added and the mixture was extracted with Et2O (3 x 20 mL). The 

combined organic layers were washed with H2O (2 x 60 mL), dried over Na2SO4, filtered 

and concentrated in vacuo. The crude product was purified by flash column 

chromatography (silicagel, EtOAc / n-Hexane 1:9) to yield 4d as a yellow oil (122 mg, 

20%). 1H NMR (250 MHz, CDCl3) δ (ppm): 7.61 - 7.51 (m, 2H), 7.14 - 7.01 (m, 2H), 2.38 (s, 

1H), 1.78 (s, 3H); 19F NMR (235 MHz, CDCl3) δ (ppm): -81.2 (s, 3F), -113.7 (s, 1F); 13C 

NMR (63 MHz, CDCl3) δ (ppm): 162.9 (d, 1JCF = 248.2 Hz), 134.2 (d, 4JCF = 3.2 Hz), 128.1 (d, 

3JCF = 7.8 Hz), 125.5 (q, 1JCF = 285.4 Hz), 115.2 (d, 2JCF = 22.1 Hz), 74.6 (q, 2JCF = 29.9 Hz), 
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23.9, HPLC retention time: 7.05 min. Synthesis and analysis of this compound is 

described previously by Mizuta et al.30 

1,1,1-trifluoro-2-(4-nitrophenyl)propan-2-ol (4e): 

To a solution of 4’-nitroacetophenone (165 mg, 1.00 mmol) in DMF (3 mL) was added 

TMSCF3 (222 μL, 1.50 mmol) and K2CO3 (14 mg, 0.10 mmol). After stirring at room 

temperature for 17 hours, TBAF (3 mL, 1M in THF, 3 mmol) was added to hydrolyse the 

intermediate TMS ether. After stirring at room temperature for 4 hours, H2O (40 mL) 

was added and the mixture was extracted with Et2O (3 x 20 mL). The combined organic 

layers were washed with H2O (2 x 60 mL), dried over Na2SO4, filtered and concentrated 

in vacuo. The crude product was purified by flash column chromatography (silicagel, 

EtOAc / n-Hexane 1:4) to yield 4e as white crystals (129 mg, 55%). 1H NMR (250 MHz, 

CDCl3) δ (ppm): 8.32 - 8.19 (m, 2H), 7.86 - 7.72 (m, 2H), 2.57 (s, 1H), 1.83 (s, 3H); 19F 

NMR (235 MHz, CDCl3) δ (ppm): -80.8 (s, 3F); 13C NMR (63 MHz, CDCl3) δ (ppm): 148.1, 

145.4, 127.6, 123.5, 125.2 (q, 1JCF = 285.4 Hz), 74.9 (q, 2JCF = 30.1 Hz), 24.1, HPLC 

retention time: 7.02 min. Synthesis and analysis of this compound is described 

previously by Song et al.31 

1,1,1-trifluoro-2-(3- nitrophenyl)propan-2-ol (4f): 

To a solution of 3’-nitroacetophenone (165 mg, 1.00 mmol) in DMF (3 mL) was added 

TMSCF3 (443 μL, 3.00 mmol) and K2CO3 (28 mg, 0.20 mmol). After stirring at room 

temperature for 21 hours, TBAF (3 mL, 1M in THF, 3 mmol) was added to hydrolyse the 

intermediate TMS ether. After stirring at room temperature for 1 hour, H2O (40 mL) was 

added and the mixture was extracted with Et2O (3 x 20 mL). The combined organic 

layers were washed with H2O (2 x 60 mL), dried over Na2SO4, filtered and concentrated 

in vacuo. The crude product was purified by flash column chromatography (silicagel, 

EtOAc / n-Hexane 1:4) to yield 4f as a yellow oil (138 mg, 59%). 1H NMR (250 MHz, 

CDCl3) δ (ppm): 8.49 (s, 1H), 8.34 - 8.19 (m, 1H), 8.03 - 7.87 (m, 1H), 7.60 (t, 3J = 7.8 Hz), 

2.53 (s, 1H), 1,85 (s, 3H); 19F NMR (235 MHz, CDCl3) δ (ppm): -81.0 (s, 3F); 13C NMR (63 

MHz, CDCl3) δ (ppm): 148.3, 140.8, 132.6, 129.5, 123.7, 121.7, 125.2 (q, 1JCF = 285.9 Hz), 

74.6 (q, 1JCF = 29.9 Hz), 23.9, HPLC retention time: 6.93 min. Synthesis and analysis of this 

compound is described previously by Mizuta et al.30 

2,2,2-trifluoro-1-(4-methoxyphenyl)ethanol (6b):  

To a solution of 4-methoxybenzaldehyde (136 mg, 1.00 mmol) in DMF (3 mL) was added 

TMSCF3 (222 μL, 1.50 mmol) and K2CO3 (14 mg, 0.10 mmol). After stirring at room 

temperature for 1 hour, TBAF (3 mL, 1M in THF, 3 mmol) was added to hydrolyse the 

intermediate TMS ether. After stirring at room temperature for 16 hours, H2O (40 mL) 

was added and the mixture was extracted with Et2O (3 x 20 mL). The combined organic 
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layers were washed with H2O (2 x 60 mL), dried over Na2SO4, filtered and concentrated 

in vacuo. The crude product was purified by flash column chromatography (silicagel, 

EtOAc / n-Hexane 1:4) to yield 6b as a yellow oil (90 mg, 44%). 1H NMR (250 MHz, 

CDCl3) δ (ppm): 7.45 - 7.35 (m, 2H), 6.98 - 6.89 (m, 2H), 5.04 - 4.90 (m, 1H), 3.38 (s, 3H), 

2.42 (d, 3J = 4.5 Hz, 1H); 19F NMR (235 MHz, CDCl3) δ (ppm): -78.5 (s, 3F); 13C NMR (63 

MHz, CDCl3) δ (ppm): 160.6, 128.9, 126.4, 124.5 (q, 1JCF = 281.7 Hz), 114.2, 72.6 (q, 2JCF = 

32.2 Hz), 55.4, HPLC retention time: 5.53 min. Synthesis and analysis of this compound is 

described previously by Shi et al.32 

2,2,2-trifluoro-1-(4-(trifluoromethyl)phenyl)ethanol (6c):  

To a solution of 4-(trifluoromethyl)benzaldehyde (174 mg, 1.00 mmol) in DMF (10 mL) 

was added TMSCF3 (222 μL, 1.50 mmol) and K2CO3 (14 mg, 0.1 mmol). After stirring at 

room temperature for 5 hours, H2O was added (20 mL) and the mixture was extracted 

with Et2O (3 x 20 mL). The combined organic layers were washed with H2O (2 x 30 mL), 

dried over Na2SO4, filtered and concentrated in vacuo. The crude TMS ether was 

hydrolysed by adding THF (3 mL) and 1M HCl (3 mL). After stirring at room temperature 

for 21 hours, H2O (40 mL) was added and the mixture was extracted with Et2O (3 x 20 

mL). The combined organic layers were washed with H2O (2 x 60 mL), dried over Na2SO4, 

filtered and concentrated in vacuo. The crude product was purified by flash column 

chromatography (silicagel, EtOAc / n-Hexane 15:85) to yield 6c as a colourless oil (33 

mg, 13%). 1H NMR (250 MHz, CDCl3) δ (ppm): 7.73 - 7.57 (m, 4H), 5.11 (q, J = 6.6 Hz, 1H), 

2.79 (s, 1H); 19F NMR (235 MHz, CDCl3) δ (ppm): -62.9 (s, 3F), -78.4 (d, J = 6.9 Hz, 3F); 13C 

NMR (63 MHz, CDCl3) δ (ppm): 137.6, 131.8 (q, 2JCF = 32.6 Hz), 127.9, 125.6 (q, 3JCF = 3.7 

Hz), 123.9 (q, 1JCF = 282.2 Hz) 123.8 (q, 1JCF = 282.2 Hz), 72.2 (q, 2JCF = 32.2 Hz), HPLC 

retention time: 8.80 min. Synthesis and analysis of this compound is described 

previously by Miyake et al.33 

2,2,2-trifluoro-1-(4-fluorophenyl)ethanol (6d): 

To a solution of 4-fluorobenzaldehyde (745 mg, 6 mmol) in DMF (20 mL) was added 

TMSCF3 (1330 μL, 9.00 mmol) and K2CO3 (83 mg, 0.6 mmol). After stirring at room 

temperature for 48 hours, H2O was added (40 mL) and the mixture was extracted with 

Et2O (3 x 20 mL). The combined organic layers were washed with H2O (2 x 60 mL), dried 

over Na2SO4, filtered and concentrated in vacuo. The crude TMS ether was hydrolysed by 

adding THF (20 mL) and 1M HCl (20 mL). After stirring at room temperature for 18 

hours, H2O (40 mL) was added and the mixture was extracted with Et2O (3 x 20 mL). The 

combined organic layers were washed with H2O (2 x 60 mL), dried over Na2SO4, filtered 

and concentrated in vacuo. The crude product was purified by flash column 

chromatography (silicagel, EtOAc / n-Hexane 15:85) to yield 6d as a yellow oil (751 mg, 
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65%). 1H NMR (250 MHz, CDCl3) δ (ppm): 7.52 - 7.41 (m, 2H), 7.16 - 7.05 (m, 2H), 5.09 - 

4.96 (m, 1H), 2.55 (d, 3J = 4.0 Hz, 1H); 19F NMR (235 MHz, CDCl3) δ (ppm): -78.6 (s, 3F), -

111.8 (s, 1F); 13C NMR (63 MHz, CDCl3) δ (ppm): 163.6 (d, 1JCF = 248.2 Hz), 129.9, 129.5 

(d, 3JCF = 8.3 Hz), 124.3 (q, 1JCF = 282.2 Hz), 115.8 (d, 2JCF = 21.6 Hz), 72.3 (q, 2JCF = 32.6 

Hz), HPLC retention time: 6.02 min. Synthesis and analysis of this compound is described 

previously by Xu et al.34 

2,2,2-trifluoro-1-(4-nitrophenyl)ethanol (6e): 

To a solution of 4-nitrobenzaldehyde (453 mg, 3 mmol) in DMF (3 mL) was added 

TMSCF3 (665 μL, 4.50 mmol) and K2CO3 (41 mg, 0.3 mmol). After stirring at room 

temperature for 4 hours, H2O was added (40 mL) and the mixture was extracted with 

Et2O (3 x 20 mL). The combined organic layers were washed with H2O (2 x 60 mL), dried 

over Na2SO4, filtered and concentrated in vacuo. The crude TMS ether was hydrolysed by 

adding THF (3 mL) and 1M HCl (3 mL). After stirring at room temperature for 2 hours, 

H2O (40 mL) was added and the mixture was extracted with Et2O (3 x 20 mL). The 

combined organic layers were washed with H2O (2 x 60 mL), dried over Na2SO4, filtered 

and concentrated in vacuo. The crude product was purified by flash column 

chromatography (silicagel, EtOAc / n-Hexane 15:85) to yield 6e as a yellow oil (313 mg, 

47%). 1H NMR (250 MHz, CDCl3) δ (ppm): 8.38 - 8.27 (m, 2H), 7.75 (d, J = 8.8 Hz), 5.23 (q, 

J = 6.4 Hz); 19F NMR (235 MHz, CDCl3) δ (ppm): -78.2 (s, 3F); 13C NMR (63 MHz, CDCl3) δ 

(ppm): 148.8, 140.5, 128.6, 123.9 (q, 1JCF = 282.2 Hz), 123.8, 72.0 (q, 2JCF = 32.6 Hz), HPLC 

retention time: 5.95 min. Synthesis and analysis of this compound is described 

previously by Xu et al.34 

2,2,2-trifluoro-1-(3-nitrophenyl)ethanol (6f): 

To a solution of 3-nitrobenzaldehyde (151 mg, 1.00 mmol) in DMF (3 mL) was added 

TMSCF3 (222 μL, 1.50 mmol) and K2CO3 (14 mg, 0.10 mmol). After stirring at room 

temperature for 1 hour, TBAF (3 mL, 1M in THF, 3 mmol) was added to hydrolyse the 

intermediate TMS ether. After stirring at room temperature for 25 minutes, H2O (40 mL) 

was added and the mixture was extracted with Et2O (3 x 20 mL). The combined organic 

layers were washed with H2O (2 x 60 mL), dried over Na2SO4, filtered and concentrated 

in vacuo. The crude product was purified by flash column chromatography (silicagel, 

EtOAc / n-Hexane 1:4) to yield 6f as a yellow oil (103 mg, 47%). 1H NMR (250 MHz, 

CDCl3) δ (ppm): 8.39 (s, 1H), 8.33 - 8.22 (m, 1H), 7.89 - 7.80 (m, 1H), 7.62 (t, J = 8.1 Hz, 

1H), 5.19 (q, J = 6.4 Hz, 1H), 2.83 (s, 1H); 19F NMR (235 MHz, CDCl3) δ (ppm): -78.4 (s, 

3F); 13C NMR (63 MHz, CDCl3) δ (ppm): 148.4, 136.2, 133.7, 129.8, 124.5, 124.0 (q, 1JCF = 

282.7 Hz), 122.7, 71.8 (q, 2JCF = 32.2 Hz), HPLC retention time: 6.02 min. Synthesis and 

analysis of this compound is described previously by Prakash et al.35 
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2,2,2-trifluoro-1-(4-(tert-butoxy)phenyl)ethanol (8): 

To a solution of 4-(tert-butoxy)benzaldehyde (178 mg, 1 mmol) in DMF (3 mL) was 

added TMSCF3 (443 μL, 3.00 mmol) and K2CO3 (28 mg, 0.2 mmol). After stirring at room 

temperature for 22 hours, H2O was added (20 mL) and the mixture was extracted with 

Et2O (3 x 20 mL). The combined organic layers were washed with H2O (2 x 30 mL), dried 

over Na2SO4, filtered and concentrated in vacuo. The crude TMS ether was hydrolysed by 

adding THF (3 mL) and 1M HCl (3 mL). After stirring at room temperature for 18 hours, 

H2O (40 mL) was added and the mixture was extracted with Et2O (3 x 20 mL). The 

combined organic layers were washed with H2O (2 x 60 mL), dried over Na2SO4, filtered 

and concentrated in vacuo. The crude product was purified by flash column 

chromatography (silicagel, EtOAc / n-Hexane 1:9) to yield 8 as white crystals (75 mg, 

30%). 1H NMR (250 MHz, CDCl3) δ (ppm): 7.40 - 7.31 (m, 2H), 7.10 - 6.92 (m, 2H), 5.04 - 

4.91 (m, 1H), 2.57 (d, 3J = 4.4 Hz, 1H), 1.36 (s, 9H); 19F NMR (235 MHz, CDCl3) δ (ppm): -

78.4 (s, 3F); 13C NMR (63 MHz, CDCl3) δ (ppm): 156.3, 129.0, 128.2, 124.0, 124.4 (q, 1JCF = 

281.7 Hz), 79.2, 72.5 (q, 2JCF = 31.7 Hz), 28.8, HPLC retention time: 8.73 min. 
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Herein, we describe a valuable method for the introduction of the [18F]CF3 group into 

arenes with highly improved specific activity by the reaction of [18F]trifluoromethane with 

aryl iodides or aryl boronic acids. This [18F]trifluoromethylation reaction is the first to be 

described in which the [18F]CF3 products are generated in actual trace amounts and can 

therefore effectively be used as PET tracers. The method shows broad scope with respect to 

possible aryl iodide and aryl boronic acid substrates, as well as good to excellent 

conversion. In particular, the [18F]trifluoromethylation of boronic acids was found to 

outperform [18F]trifluoromethylation reactions of halogenated aryl precursors with regard 

to conversion, reaction conditions, and kinetics. 
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4.1 Introduction 

Positron emission tomography (PET) is a non-invasive molecular-imaging technique for 

the visualization of human physiology by the use of biomarkers labelled with a positron 

emitting radionuclide.1 As only trace amounts of a radiolabelled biomarker are required 

for the emission of enough positrons for a PET scan, PET is a very valuable technique for 

the imaging of low-density biological targets without inducing any biological effects. 

Therefore, PET has proven to be an excellent diagnostic tool in all areas of medicine and 

is frequently used to detect, characterise, and monitor cancer as well as neuro-

degenerative and cardiovascular diseases; it can even lead to diagnosis well before 

structural changes or symptoms occur.2-8 Furthermore, PET imaging is of added value in 

drug-discovery and drug-development programs.9-11 

Among the various positron-emitting isotopes available, fluorine-18 is most 

commonly used. Fluorine-18 has a relatively low positron energy (Emax = 634 keV) and is 

readily produced with a low-energy cyclotron. This characteristic, in combination with a 

half-life of 110 min, makes fluorine-18 perfectly suited for introduction in small-

molecule PET radiopharmaceuticals. Still, short synthesis times are required, and for 

optimal utilization, the introduction of fluorine-18 and subsequent purification, 

formulation, and quality control of the 18F-labelled PET radiopharmaceutical has to be 

completed within 2 h. Consequently, there is an increasing demand for new robust, 

reliable, and rapid radiochemical synthetic methodology for the late-stage introduction 

of fluorine-18 into radiopharmaceuticals. Of particular interest are methods that utilise 

[18F]fluoride, as this reagent is obtained by the 18O(p,n)18F nuclear reaction in high yields 

and is commercially available.12-15 

The CF3 group is a popular functional group in many active pharmaceutical 

ingredients (APIs) and/or drug candidates, because it improves binding selectivity, 

lipophilicity, and metabolic stability.16-18 Efficient methodology to introduce 18F-labelled 

CF3 groups into such compounds makes them useful as potential PET tracers. Today, only 

a few methods are available for the radiolabeling of trifluoromethyl arenes with 

[18F]fluoride (Scheme 1). These methods can be divided into two categories: the direct 

treatment of [18F]fluoride with a precursor of the type ArCF2X,19-22 and the introduction 

of a [18F]CF3 group by the treatment of an aryl iodide with [18F]CuCF3 formed in situ.23-25 

Both approaches require harsh reaction conditions and long reaction times. 

Furthermore, the labelled products are not suitable as PET tracers. Owing to degradation 

of the RCF2X (ArCF2X, HCF2I, COOMeCF2I) precursors, not only radioactive 18F, but also 

mass amounts of 19F are incorporated into the products. In radiochemistry, the ratio of 

18F over the total mass of the product is expressed as the specific activity (SA) in 

GBq/µmol. The reported specific activities of 100–139 MBq/µmol for methods based on 
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the use of [18F]CuCF3 make these products unsuitable for the imaging of low-density 

biological targets.26 

 

Scheme 1 Reported methods for the synthesis of [18F]trifluoromethyl arenes. 

Recently, we reported the synthesis of [18F]HCF3 and its application as a labelling 

agent for the [18F]trifluoromethylation of aldehydes and ketones.27 To further extend the 

application of [18F]HCF3, we focused on broadening the scope of the reaction by 

exploring the labelling of aryl iodides and aryl boronic acids. To make the products 

useful for PET imaging, we also investigated the synthesis of [18F]HCF3 with an improved 

SA. We suspect that all [18F]trifluoromethylation products derived from [18F]HCF3 with 

an improved SA will also be obtained with an improved SA. Herein we report the broad 

applicability of [18F]HCF3 as a labelling agent with improved SA for the aromatic 

[18F]trifluoromethylation of aryl iodides and aryl boronic acids (Scheme 2). 

 

Scheme 2 Our strategy for [18F]trifluoromethylation by the use of [18F]HCF3 with highly improved 

specific activity as a versatile labeling agent. 
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4.2 Results and discussion 

First, we focused on the [18F]trifluoromethylation of aryl iodides by using iodobenzene 

as a model substrate. Initial experiments with various strong bases and CuI sources did 

not lead to satisfactory yields of the desired [18F](trifluoromethyl)benzene, and 

decomposition of [18F]CuCF3 to [18F]fluoride was observed.28 However, the addition of 

Et3N·3HF to the solution was found to stabilise the CuCF3 species owing to precipitation 

of the K+ cation as KF(s), as was reported by Zanardi et al.29 With this approach, we 

obtained [18F]trifluoromethylbenzene in satisfactory yields (Table 1). The formation of 

[18F]CuCF3 and subsequent stabilization with Et3N·3HF was completed in just 2 min at 

room temperature. 

Table 1 Optimization of the [18F]trifluoromethylation of iodobenzene.a 

 

Entry Base CuI 

source 

CuI 

[mM] 

Ratiob t 

[min] 

Conversion 

[%] (n = 3) 

1 KOtBu CuICl 20 1:3:1 10 48 ± 3 

2 KOtBu CuIBr 20 1:3:1 10 56 ± 3 

3 KOtBu CuII 20 1:3:1 10 57 ± 3 

4 NaOtBu CuIBr 20 1:3:1 10 3 ± 3 

5 KHMDS CuIBr 20 1:3:1 10 12 ± 5 

6 KOtBu CuIBr 20 1:3:0.5 10 4 ± 2 

7 KOtBu CuIBr 20 1:3:1.5 10 46 ± 3 

8 KOtBu CuIBr 40 1:3:1 10 34 ± 2 

9 KOtBu CuIBr 10 1:3:1 10 61 ± 2 

10 KOtBu CuIBr 10 1:3:1 5 32 ± 5 

aStandard reaction conditions: [18F]CuCF3 formation at 20 °C for 1 min; Et3N·3HF stabilization at 
20 °C for 5 min; [18F]trifluoromethylation at 130 °C; DMF (0.5 mL). bCuIX/base/Et3N·3HF ratio.  
DMF = N,N-dimethylformamide, HMDS = hexamethyldisilazide. 

 

Optimal [18F]trifluoromethylation of iodobenzene proceeded at 130 °C in DMF in 10 

min in the presence of CuIBr, KOtBu, and Et3N·3HF in a molar ratio of 1:3:1 and with a 

total CuIBr concentration of 10 mm. Various other CuI sources can also be used (Table 1, 

entries 1–3). Of the various bases, however, only KOtBu led to good conversion (Table 1, 
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entries 4 and 5), when used in 3 molar excess relative to the amount of CuIBr. For the 

stabilization of the formed [18F]CuCF3, all K+ ions had to react with Et3N·3HF; thus, 

relative to KOtBu, 1 equivalent of HF, which corresponds to 0.33 equivalents of 

Et3N·3HF, had to be present in the reaction mixture. A decrease in the amount of 

Et3N·3HF led to a drastic reduction in conversion into the product (Table 1, entry 6). We 

also found that the total concentration of the CuIBr, KOtBu, and HF reagents is quite 

important. Higher concentrations of these reagents led to lower conversion (Table 1, 

entry 8). 

Having optimised the reaction conditions for the [18F]trifluoromethylation of aryl 

iodides, we turned our attention to the scope of this reaction (Scheme 3). A broad range 

of aryl iodides could be converted successfully into the desired [18F]trifluoromethyl 

arenes. From Scheme 3, it becomes clear that electronic effects do not have a large 

impact, and a wide array of functional groups in the precursor structure are compatible 

with the reaction. Even more interesting is that both 4-iodobenzaldehyde and 4-

iodoacetophenone are exclusively converted into the [18F]ArCF3 products 10 and 11, 

with no [18F]trifluorocarbinol formation observed. Trifluorocarbinols are known to be 

formed by the reaction of the trifluoromethyl anion with aldehydes and ketones.27,30-32 

However, as we did not observe any [18F]trifluorocarbinol side products, we can 

conclude that no sources of the [18F]CF3 anion were present in the reaction mixture. 

Unprotected alcohols and carboxylic acids were found to be incompatible with our 

method. The use of unprotected aniline, however, did lead to product formation with 

good conversion. 

To further extend the application of [18F]HCF3 as a labelling agent, we investigated 

the oxidative [18F]trifluoromethylation of boronic acids (Table 2).33 The required 

[18F]CuICF3 reagent was prepared as described for the [18F]trifluoromethylation of aryl 

iodides. Next, [18F]CuICF3 was oxidised to [18F]CuIICF3 in the presence of the boronic acid 

precursor by purging the reaction mixture with air during the first minute of the 

reaction. Oxidation with air is required, as only a low conversion was found when the 

reaction mixture was not purged with air (Table 2, entry 1). The preparation of 

[18F]trifluoromethyl arenes by using boronic acid substrates led to some major 

improvements over the [18F]trifluoromethylation of aryl iodides, thus making this 

method more appropriate for the synthesis of PET radiopharmaceuticals. 
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Scheme 3 Scope of the [18F]trifluoromethylation of aryl iodides and aryl boronic acids. Standard 

reaction conditions: [18F]CuCF3 formation: 1) CuIBr (5 µmol), KOtBu (15 µmol), DMF, 20 °C, 1 min; 

2) Et3N·3HF (5 µmol), 20 °C, 1 min; method A: aryl iodide (100 µmol), 130 °C, 10 min; method B: aryl 

boronic acid (50 µmol), air (10 mL), 20 °C, 10 min. Boc = tert-butoxycarbonyl. All radiochemical yields 

are determined by analytical HPLC (n = 3). 
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Table 2 Optimization of the [18F]trifluoromethylation of phenylboronic acid.a 

 

Entry Phenylboronic acid 

[µmol] 

Air 

[mL] 

t 

[min] 

Conversion 

[%] (n = 3) 

1 100 0 10 19 ± 22 

2 100 0.5 10 62 ± 19 

3 100 5 10 87 ± 8 

4 50 5 10 94 ± 1 

5 20 5 10 55 ± 17 

6 10 5 10 4 ± 5 

7 50 5 1 85 ± 10 

8 50 10 1 94 ± 1 

aStandard reaction conditions: CuIBr (5 µmol), KOtBu (15 µmol), Et3N·3HF (5 µmol), DMF (0.5 mL); 
[18F]CuCF3 formation at 20 °C for 1 min; Et3N·3HF stabilization at 20 °C for 1 min; [18F]trifluoro-
methylation at 20 °C. 

 

Significant advantages over the [18F]trifluoromethylation of aryl iodides are the 

reduction in the amount of the precursor required from 100 to 50 µmol (Table 2, entries 

3–6), the completion of the synthesis in just 1 min instead of 10 min (Table 2, entries 7 

and 8), and a reaction temperature of 20 °C instead of 130 °C. All in all, these conditions 

result in less degradation of the precursor. In general, an improved substrate scope of 

the reaction and higher conversion were observed when boronic acids were used instead 

of aryl iodide precursors (Scheme 3). Again, electronic effects did not have a large impact 

on conversion into the product, and the reaction of boronic acids with an aldehyde or 

ketone functionality only led to the [18F]ArCF3 products 10 and 11. From the boronic 

acid precursor, even the unprotected [18F]trifluoromethylated phenol 12 could be 

formed; thus, acetyl protection of phenol groups is not required. The reaction to form 

aniline 14 could unfortunately not be investigated owing to the unsuccessful synthesis of 

the boronic acid precursor; however, the N-Boc-protected aniline 17 and phenylamide 

18 were formed with excellent conversion. Carboxylic acid 13 could not be formed: 

Protection of the acid group was required. The low conversion in the formation of iodide 

9 was attributed to the poor solubility of 4-iodophenylboronic acid in DMF. 



 
Chapter 4 

206 

To prove the applicability of this method for the synthesis of PET radio-

pharmaceuticals, we synthesised the [18F]trifluoromethyl-substituted estrone derivative 

22 as well as the Boc- and OMe-protected [18F]4-trifluoromethylphenylalanine 25 

(Scheme 4). Both products are radiopharmaceuticals of interest for PET. Estrone has a 

high binding affinity for the estrogen receptor, and this [18F]trifluoromethylestrone 

derivative is therefore a potentially useful tracer for the imaging of overexpression of the 

estrogen receptor in breast cancer. This type of cancer relies on estrogen hormones for 

growth. If overexpression is found by the use of PET, a hormone-suppression treatment 

could be started.34-35 Radiolabelled amino acids, including [18F]4-fluorophenylalanine, 

have found their application in the imaging of upregulated amino acid incorporation by 

various types of cancer cells. Methods for the synthesis of [18F]fluoro-substituted 

phenylalanine, however, are impractical, as they require multistep synthetic routes 

and/or electrophilic labelling methods. 

 

Scheme 4 Synthesis of the [18F]trifluoromethyl-substituted estrone derivative 22 and Boc/OMe-

protected [18F]4-trifluoromethylphenylalanine 25. 

For both estrone and phenylalanine, direct instalment of the fluorine-18 isotope at 

the aromatic ring by nucleophilic substitution with [18F]fluoride is not possible owing to 
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the high electron density of the aromatic systems. However, as [18F]trifluoromethylation 

is barely affected by electronic effects, we reasoned that it should be possible to install 

the [18F]CF3 group at the aromatic ring in these compounds. As anticipated, both the 

[18F]trifluoromethylation of aryl iodides 20 and 23 and the oxidative [18F]trifluoro-

methylation of boronic acids 21 and 24 led to the desired products. In particular when 

the boronic acids were used as the starting material, we observed excellent conversion in 

just 1 min at 20 °C. 

Next, we investigated the specific activity (SA) of the products obtained by the 

method described herein. The initial measured SA of [18F]1-trifluoromethyl-4-nitro-

benzene, obtained by the [18F]trifluoromethylation of 1-iodo-4-nitrobenzene, was ap-

proximately 1 GBq/µmol. As CHF2I in the first step towards [18F]HCF3 is probably the 

major source of 19F, we investigated the reduction of the amount of CHF2I used. Indeed, a 

decrease in the CHF2I amount from 40 to 1 µmol and an increase in the reaction 

temperature to 130 °C led to the formation of [18F]1-trifluoromethyl-4-nitrobenzene 

with specific activities ranging from 22 to 32 GBq/µmol. This method did lead to the 

formation of less [18F]HCF3, but it was still obtained in an acceptable yield of 36 ± 7%. 

The presence of Et3N·3HF in the next reaction could theoretically reduce the SA of 

the obtained reaction product through 19F/18F isotopic exchange. We showed by the 

application of a single batch of [18F]HCF3 for three reactions with 1-iodo-4-nitrobenzene, 

4-nitrophenylboronic acid, and benzophenone that the SA of all three obtained products 

was the same (see the Supporting Information for details). Since in the reaction of 

benzophenone with [18F]HCF3 no addition of Et3N·3HF is required, we thus proved 

indirectly that no 19F/18F isotopic exchange occurs during the reaction of [18F]HCF3 with 

1-iodo-4-nitrobenzene and 4-nitrophenylboronic acid. We can safely assume that the SA 

of the reaction products is determined by the SA of [18F]HCF3, and this reagent could be 

applied broadly to obtain [18F]CF3-labelled compounds with improved SA. From all 

combined experiments we found a SA of 27 ± 8 GBq/µmol for [18F]HCF3 and thus a SA of 

25 ± 7 GBq/µmol for the reaction products after a reaction time of 15 min. We did 

observe a decrease in the yield of the reactions of [18F]HCF3 of improved SA with 1-iodo-

4-nitrobenzene (60 ± 12% (n=6)) and 4-nitrophenylboronic acid (65 ± 4% (n=2)). This 

yield decrease might be caused by unfavourable reaction kinetics due to the lower 

amounts of HCF3 present in the reaction mixture; however, more evidence is required to 

support this finding. 

4.3 Conclusions 

In summary, [18F]HCF3 was found to be an excellent labelling agent for the 

[18F]trifluoromethylation of aryl iodides and aryl boronic acids with strongly improved 

specific activities under mild reaction conditions. As the -CF3 group is a common moiety 
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in drug candidates and active pharmaceutical ingredients, we expect that this 

methodology will be widely applied in the synthesis of fluorine-18 labelled PET tracers. 

4.4 Materials and methods 

4.4.1 General 

Chemicals were purchased from Sigma-Aldrich, Acros and ABCR and used as received. 

Solvents were purchased from Biosolve and Sigma-Aldrich and were dried on activated 

3Å molecular sieves. NMR spectra were recorded on Bruker Avance 250, Bruker Avance 

400 and Bruker Avance 500 spectrometers at a temperature of 20 °C. Chemical shifts (δ) 

are given in ppm, internally referenced to residual solvent resonances for 1H and 13C (1H: 

δ = 7.26 ppm, 13C: δ = 77.16 ppm) and referenced to CFCl3 as internal standard for 19F (δ 

= 0.00 ppm). Coupling constants (J) are reported in units of hertz (Hz). The following 

abbreviations are used to describe multiplicities: s (singlet), d (doublet), t (triplet), q 

(quartet), m (multiplet), br. s (broad singlet). NMR spectra of boronic acids were taken in 

DMSO-δ6 with added D2O to prevent the formation of boronic acid trimers. Electrospray 

Ionisation (ESI) high-resolution mass spectrometry was carried out using a Bruker 

micrOTOF-Q instrument in positive or negative ion mode (capillary potential of 4500 V). 

Thin Layer Chromatography was performed using TLC plates from Merck (SiO2, neutral 

kieselgel 60 on alumina with a 254 nm fluorescence indicator). Compounds on the TLC 

plate were visualised by UV light at 254 nm. Flash column chromatography was 

performed on a Büchi Sepacore® X10 flash system using silica packed cartridges. 

Analytical HPLC was done on a HPLC system consisting of a Jasco PU-1580 pump, a Jasco 

UV-2075 Plus UV/Vis detector set at a wavelength of 254 nm, a Scionex 51BP 51/2 NaI 

radioactivity detector, Raytest Gina data acquisition and control interface and a Grace 

AlltimaTM C18 5u 250mm x 4.6mm or Agilent Zorbax Bonus-RP 5u 250mm x 4.6 mm 

column. Radioactivity was quantified with a Veenstra VDC-304 dose calibrator. 

4.4.2 Production of [18F]fluoride 

[18F]fluoride was produced by the 18O(p,n)18F nuclear reaction on an IBA Cyclone® 18/9 

cyclotron using a H218O liquid target. After irradiation, the target water was passed 

through a Chromafix® 30-PS-HCO3 18F separation cartridge to trap the [18F]fluoride. 

4.4.3 Synthesis of [18F]trifluoromethane 

Herein, two methods are described for the synthesis of [18F]trifluoromethane. Method I 

should be chosen if a high specific activity is not required, as it gives [18F]trifluoro-

methane in a yield of 60% ± 15%, however with a specific activity of ~1 GBq/µmol 

(starting from 10 GBq of [18F]fluoride). If a high specific activity is required, one should 
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choose method II, as it gives [18F]trifluoromethane with a specific activity of 32 ± 7 

GBq/µmol (starting from 31 GBq of [18F]fluoride), however [18F]trifluoro-methane is 

obtained in a lower yield of 34% ± 8%. In addition, lower amounts of Kryptofix K2.2.2 and 

K2CO3 are used, requiring a modified protocol for the elution of [18F]fluoride from the 

Chromafix® 30-PS-HCO3 18F separation cartridge. 

Method I - Low specific activity, high yield 

A Chromafix® 30-PS-HCO3 18F separation cartridge loaded with [18F]fluoride was eluted 

using a solution of Kryptofix K2.2.2 (13 mg) and K2CO3 (2 mg) in MeCN/H2O (1 mL, ratio 

9:1). The solution was dried under a stream of Helium and reduced pressure at 90 °C for 

10 minutes during which residual water was removed by azeotropic co-evaporation 

using three portions of anhydrous MeCN (1 mL). Difluoroiodomethane (7.1 mg, 40 µmol) 

dissolved in MeCN (1 mL) was added to the dry [18F]fluoride and was reacted at room 

temperature for 10 minutes. After the reaction time was over, the formed 

[18F]trifluoromethane was purged out of the reaction mixture by bubbling helium 

through it with a flow of 10 mL/min for 3 minutes. The gaseous [18F]trifluoromethane 

was led through a Waters Sep-Pak® Plus Silica cartridge to remove any volatile difluoro-

iodomethane and was trapped in DMF (1 mL, -65 °C) in 60% ± 15% yield with a specific 

activity of ~1 GBq/µmol (starting from 10 GBq of [18F]fluoride). 

Method II - Improved specific activity 

A Chromafix® 30-PS-HCO3 18F separation cartridge loaded with [18F]fluoride was eluted 

in reverse order to a reaction vessel using a solution of K2CO3 (0.2 mg) in water (0.5 mL) 

followed by a solution of Kryptofix K2.2.2 (1.3 mg) in MeCN (0.5 mL). The solution was 

dried under a stream of Helium and reduced pressure at 90 °C for 10 minutes during 

which residual water was removed by azeotropic co-evaporation using three portions of 

anhydrous MeCN (1 mL). Difluoroiodomethane (0.18 mg, 1 µmol) dissolved in MeCN (1 

mL) was added to the dry [18F]fluoride and was reacted at room temperature for 10 

minutes. After the reaction time was over, the formed [18F]trifluoromethane was purged 

out of the reaction mixture by bubbling helium through it with a flow of 10 mL/min for 3 

minutes. The gaseous [18F]trifluoromethane was led through a Waters Sep-Pak® Plus 

Silica cartridge to remove any volatile difluoroiodomethane and was trapped in DMF (1 

mL, -65 °C) in 34% ± 8% yield with a specific activity of 32 ± 7 GBq/µmol (starting from 

31 GBq of [18F]fluoride). 

4.4.4 General procedure for the [18F]trifluoromethylation of aryl iodides 

A reaction vessel loaded with Cu(I)Br (0.7 mg, 5 µmol) was closed with a septum and 

purged with argon. Via the septum were subsequently added DMF (200 µL), [18F]HCF3 in 
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DMF (100 µL) and 0.3M KOtBu in DMF (50 µL, 15 µmol) and this reaction mixture was 

kept at room temperature for 1 minute to form [18F]CuCF3, which was then stabilised by 

the addition of Et3N.3HF (0.82 µL, 5 µmol) in 50 µL DMF. After 1 minute at room 

temperature, the aryl iodide (100 µmol) in 100 µL DMF was added to the reaction 

mixture. After 10 minutes at 130 °C, the reaction mixture was quenched by addition of 

500 µL water and cooled to room temperature.  

4.4.5 General procedure for the [18F]trifluoromethylation of arylboronic acids 

A reaction vessel loaded with Cu(I)Br (0.7 mg, 5 µmol) was closed with a septum and 

purged with argon. Via the septum were subsequently added DMF (200 µL), [18F]HCF3 in 

DMF (100 µL) and 0.3M KOtBu in DMF (50 µL, 15 µmol) and this reaction mixture was 

kept at room temperature for 1 minute to form [18F]CuCF3, which was then stabilised by 

the addition of Et3N.3HF (0.82 µL, 5 µmol) in 50 µL DMF. After 1 minute at room 

temperature, the arylboronic acid (50 µmol) in 100 µL DMF was added to the reaction 

mixture. During 1 minute at room temperature, air was bubbled through the reaction 

mixture, after which it was quenched by addition of 500 µL water. 

4.4.6 Analysis of the [18F]trifluoromethylation reactions 

All the reactions were analysed by HPLC chromatography using a Grace AlltimaTM C18 5u 

250mm x 4.6mm column with various ratios of MeCN/H2O/TFA (Table 3). Radioactive 

products were identified by comparison of the retention times of the radioactivity peak 

with the UV peak of co-injected non-radioactive reference. Within the HPLC system, the 

eluent passes first through the UV detector followed by the radioactivity detector, 

causing a 0.15 - 0.17 min difference between the UV and the radioactivity peaks which 

should be taken in account. Conversions can be calculated from the HPLC chromate-

graphs, as no radioactive compounds (for example [18F]fluoride) are retained to the 

Grace AlltimaTM C18 column. 

The HPLC retention times of both the references and radiolabelled products are 

shown in the table 3. 
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Table 3 HPLC retention times of references and radiolabelled products. 

Compound Name 19F-Reference 

Rt (min) 

18F- Product 

Rt (min) 

HPLC Eluens 

Benzotrifluoride 7.12 7.27 70:30:0.2 MeCN/H2O/TFA 

1,4-bis(trifluoromethyl)benzene 9.00 9.17 70:30:0.2 MeCN/H2O/TFA 

1,3-bis(trifluoromethyl)benzene 8.90 9.05 70:30:0.2 MeCN/H2O/TFA 

1,2-bis(trifluoromethyl)benzene 8.27 8.42 70:30:0.2 MeCN/H2O/TFA 

1-nitro-4-(trifluoromethyl)-benzene 5.58 5.73 70:30:0.2 MeCN/H2O/TFA 

1-methoxy-4-(trifluoromethyl)benzene 7.17 7.33 70:30:0.2 MeCN/H2O/TFA 

1-bromo-4-(trifluoromethyl)benzene 9.85 10.00 70:30:0.2 MeCN/H2O/TFA 

4-iodobenzotrifluoride 11.18 11.33 70:30:0.2 MeCN/H2O/TFA 

4-(trifluoromethyl)-benzaldehyde 12.17 12.33 50:50:0.2 MeCN/H2O/TFA 

4’-(trifluoromethyl)-acetophenone 13.35 13.52 50:50:0.2 MeCN/H2O/TFA 

4-(trifluoromethyl)phenol 23.68 23.78 35:65:0.2 MeCN/H2O/TFA 

4-(trifluoromethyl)benzoic acid 8.35 8.52 35:65:0.2 MeCN/H2O/TFA 

4-(trifluoromethyl)benzonitrile 5.72 5.88 70:30:0.2 MeCN/H2O/TFA 

4-(trifluoromethyl)aniline 6.05 6.20 50:50:0.2 MeCN/H2O/TFA 

4-(trifluoromethyl)phenyl acetate 14.75 14.92 50:50:0.2 MeCN/H2O/TFA 

4-(trifluoromethyl)benzoate 7.13 7.30 70:30:0.2 MeCN/H2O/TFA 

N-Boc-4-(trifluoromethyl)aniline 9.10 9.23 70:30:0.2 MeCN/H2O/TFA 

N-(4-(trifluoromethyl)-
phenyl)acetamide 

7.95 8.10  50:50:0.2 MeCN/H2O/TFA 

2-(trifluoromethyl)pyridine 7.18 7.33 50:50:0.2 MeCN/H2O/TFA 

3-deoxy-3-(trifluoromethyl)estrone 6.52 6.68 90:10:0.2 MeCN/H2O/TFA 

N-(tert-butoxycarbonyl)-4-(trifluoro-
methyl)-L-phenylalanine methyl ester 

7.23 7.40 70:30:0.2 MeCN/H2O/TFA 
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4.4.7 Measurement of specific radioactivity 

To measure the specific radioactivity, [18F]trifluoromethane, synthesised via either 

method I or method II (Section 4.4.3), was reacted with 1-iodo-4-nitrobenzene using the 

general procedure for the [18F]trifluoromethylation of aryl iodides (Section 4.4.4). The 

specific radioactivity of the [18F]1-(trifluoromethyl)-4-nitrobenzene product was 

determined by HPLC. The amount of non-radioactive 1-(trifluoromethyl)-4-nitrobenzene 

in the reaction mixture was determined using analytical HPLC by measuring the UV peak 

area. A calibration curve was made in duplo by measuring 1-(trifluoromethyl)-4-nitro-

benzene stock solutions at a wavelength of 254 nm. The amount of activity of [18F]1-

(trifluoromethyl)-4-nitrobenze injected on the HPLC was determined by collection of the 

product peak and subsequent measurement using a dose calibrator. The specific activity 

can then be calculated by dividing the collected [18F]1-(trifluoromethyl)-4-nitrobenze 

activity in GBq by the amount of 1-(trifluoromethyl)-4-nitrobenzene in µmol. The 

specific activity of [18F]1-(trifluoromethyl)-4-nitrobenze obtained by method I was <1 

GBq/µmol (starting from 10 GBq of [18F]fluoride) and the specific activity obtained by 

method II was 32 ± 7 GBq/µmol (starting from 31 GBq of [18F]fluoride). Examples of data 

from determination of the specific activity of [18F]1-(trifluoromethyl)-4-nitrobenzene 

using [18F]HCF3 produced using method I and method II are shown in Table 4 and  

Table 5. 
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Table 4 Example of specific activity determination of [18F]1-(trifluoromethyl)-4-nitrobenzene 

synthesized using [18F]HCF3 produced via method I. 

HPLC System 
Zorbax Bonus RP 5 µm 4.6 x 250 mm; 2 mL/min,  

35:65:0.2 MeCN/H2O/TFA 

Starting amount of [18F]fluoride 8696 MBq 

UV peak area 1511 mV*min 

1-(Trifluoromethyl-4-nitrobenzene 

Amount injected 
6.35 nmol 

[18F]1-(Trifluoromethyl)-4-nitrobenzene 
Activity injected 

2.970 MBq (dc, end of synthesis) 

[18F]1-(Trifluoromethyl)-4-nitrobenzene 
Specific Activity 

0.47 GBq/µmol 

HPLC Chromatogram 
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Table 5 Example of specific activity determination of [18F]1-(trifluoromethyl)-4-nitrobenzene 

synthesized using [18F]HCF3 produced via method II. 

HPLC System 
Zorbax Bonus RP 5 µm 4.6 x 250 mm; 2 mL/min,  

35:65:0.2 MeCN/H2O/TFA 

Starting amount of [18F]fluoride 31160 MBq 

UV peak area 226.7 mV*min 

1-(Trifluoromethyl-4-nitrobenzene 

Amount injected 
0.95 nmol 

[18F]1-(Trifluoromethyl)-4-nitrobenzene 
Activity injected 

29.33 MBq (dc, end of synthesis) 

[18F]1-(Trifluoromethyl)-4-nitrobenzene 
Specific Activity 

28.0 GBq/µmol 

HPLC Chromatogram 
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4.4.8 Reaction of [18F]HCF3 with 1-iodo-4-nitrobenzene, 4-nitrophenylboronic 

acid and benzophenone: comparison of specific activities 

To show that after purification of [18F]HCF3 no 19F is introduced in the subsequent 

trifluoromethylation reactions, we split up a single batch of [18F]HCF3 made via method II 

and let it react with 1-iodo-4-nitrobenzene (Reaction A), 4-nitrophenylboronic acid 

(Reaction B) and benzophenone (Reaction C)(Scheme 5). After the reactions, we 

measured the specific activities of the formed products (decay corrected to the end of 

synthesis of [18F]HCF3). The overall yield of [18F]HCF3, synthesised via method II, was 

30%. The specific activity of [18F]-trifluoromethyl-4-nitrobenzene was found to be 20.3 

GBq/µmol when formed by reaction of [18F]HCF3 with 1-iodo-4-nitrobenzene (Reaction 

A) and 19.0 GBq/µmol when formed by reaction of [18F]HCF3 with 4-nitrophenylboronic 

acid (Reaction B). The reaction of [18F]HCF3 with benzophenone gave [18F]2,2,2-trifluoro-

1-diphenylethanol in a specific activity of 16.0 GBq/µmol (Reaction C). 

 

Scheme 5 Reaction of [18F]HCF3; made via method II, with 1-iodo-4-nitrobenzene, 4-nitrophenylboronic 

acid and benzophenone for determination of the specific activity of the radiolaballed products. 

The whole experiment was performed in duplicate. The data are shown in the Table 

6. As can be seen in both experiments, the products of reaction A, B and C were formed 

with similar specific activity (corrected to the same time). In reaction C, the reaction with 

benzophenone, no sources of 19F are present in the reaction mixture. In reactions A and 

B, Et3N.3HF was added to stabilize the formed CuCF3. This could lead to a reduction of 

the specific activity due to incorporation of 19F originating from Et3N.3HF. However, this 

did not occur since the specific activities of reaction A and B were not lower than the 

specific activity in reaction C. In the same way, the specific activities of all products 
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formed by the reaction of [18F]HCF3 with aryl iodides and arylboronic acids should 

reflect the specific activity of the synthesized [18F]HCF3. 

Table 6 Specific activity determination of the reaction of [18F]HCF3 with 1-iodo-4-nitrobenzene, 4-
nitrophenylboronic acid and benzophenone.  

 Experiment I Experiment II 

Synthesis of [18F]HCF3     

Amount of [18F]fluoride  33 GBq 10:15  31 GBq 13:22 

Amount of [18F]HCF3  9.8 GBq 10:57  6.2 GBq 14:10 

Yield of [18F]HCF3  45%   30%  

Reaction A     

Amount of [18F]HCF3 used  1155 MBq 12:40  773 MBq 15:25 

Reaction yield  58%   72%  

Specific activity reaction A  11.0 GBq/µmol 12:54  11.6 GBq/µmol 15:38 

Specific activity at end of synthesis [18F]HCF3  23.0 GBq/µmol 10:57  20.3 GBq/µmol 14:10 

Reaction B     

Amount of [18F]HCF3 used  2333 MBq 11:07  1584 MBq 14:14 

Reaction yield  62%   68%  

Specific activity reaction B  20.5 GBq/µmol 11:00  17.9 GBq/µmol 14:19 

Specific activity at end of synthesis [18F]HCF3  22.6 GBq/µmol 10:57  19.0 GBq/µmol 14:10 

Reaction C     

Amount of [18F]HCF3 used  721 MBq 13:48  470 MBq 16:15 

Reaction yield  99%   100%  

Specific activity reaction C  8.9 GBq/µmol 13:28  8.9 GBq/µmol 13:28 

Specific activity at end of synthesis [18F]HCF3  23.0 GBq/µmol 10:57  16.0 GBq/µmol 10:57 

 

4.4.9 Synthesis of precursors and reference compounds 

1-Methoxy-4-(trifluoromethyl)benzene 

To a solution of 4-(trifluoromethyl)phenol (595 mg, 3.67 mmol) in acetone (5 mL) was 

added K2CO3 (517 mg, 3.74 mmol) and CH3I (0.32 mL, 5.14 mmol). The reaction mixture 

was stirred at room temperature for 24 hours, followed by concentration in vacuo. The 

residue was taken up in water (4 mL) and extracted with EtOAc (2 x 4 mL). The 

combined organic layers were dried over Na2SO4, filtered and concentrated in vacuo. The 

crude product was purified by silica gel column chromatography (n-hexane) to afford 1-

methoxy-4-(trifluoromethyl)benzene (585 mg, 3.32 mmol, 91% yield) as a colourless oil. 
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1H NMR (500.23 MHz, CDCl3) δ 7.55 (d, J = 8.5 Hz, 2H), 6.96 (d, J = 8.5 Hz, 2H), 3.85 (s, 

3H); 13C NMR (125.80 MHz, CDCl3) δ 162.1, 127.0 (q, JC-F = 3.8 Hz), 124.6 (q, JC-F = 272.5 

Hz), 123.0 (q, JC-F = 32.7 Hz), 114.1, 55.6; 19F NMR (235.33 MHz, CDCl3): δ = -62.0 (s, 3F). 

Spectral data match reported data in literature.36,37 

Tert-butyl (4-iodophenyl)carbamate  

To a solution of 4-iodoaniline (5.00 g, 22.8 mmol) in THF was added di-tert-butyl 

dicarbonate (5.23 g, 24.0 mmol). Next, the reaction mixture was refluxed for 24 hours, 

subsequently cooled to room temperature and concentrated in vacuo. The residue was 

taken up in EtOAc (100 mL), washed with 0.5M aqueous citric acid (3 x 50 mL) and brine 

(50 mL), dried over Na2SO4, filtered and concentrated in vacuo. The crude product was 

purified by silica gel column chromatography (gradient 100:0 - 95:5 n-hexane:EtOAc) to 

afford t-butyl(4-iodophenyl)carbamate (4.82 g, 15.1 mmol, 66% yield) as a white solid. 

1H NMR (500.23 MHz, CDCl3) δ 7.57 (d, J = 7.9 Hz, 2H), 7.14 (d, J = 7.9 Hz, 2H), 6.45 (br. s, 

1H), 1.51 (s, 9H); 13C NMR (125.80 MHz, CDCl3) δ 125.6, 138.3, 138.0, 120.5, 85.9, 81.1, 

28.4; HRMS (ESI) calcd for C11H15INO2 [M+H+] 284.0887, found 284.0869.38,39 

Tert-butyl (4-(trifluoromethyl)phenyl)carbamate 

To a reaction vessel were added 4-(trifluoromethyl)aniline (195 µL, 1.55 mmol), di-tert-

butyl dicarbonate (356 mg, 1.63 mmol) and THF (5 mL). The reaction vessel was closed 

and stirred at 70 °C for 8 days. After cooling to room temperature, the reaction mixture 

was concentrated in vacuo. The residue was taken up in EtOAc (5 mL), washed with 0.5M 

aqueous citric acid (3 x 5 mL) and brine (5 mL), dried over Na2SO4, filtered and 

concentrated in vacuo. The crude product was purified by silica gel column 

chromatography (n-hexane, 0.1% Et3N) to afford tert-butyl (4-

(trifluoromethyl)phenyl)carbamate (349 mg, 1.34 mmol, 86%) as a white solid. 1H NMR 

(500.23 MHz, CDCl3) δ 7.54 (d, J = 8.5 Hz, 2H), 7.47 (d, J = 8.5 Hz, 2H), 6.64 (br. s, 1H), 

1.53 (s, 9H); 13C NMR (125.80 MHz, CDCl3) δ 152.4, 141.6, 126.4 (q, JC-F = 3.6 Hz), 124.9 

(q, JC-F = 32.7 Hz), 124.4 (q, JC-F = 271.6 Hz), 118.0, 81.4, 28.4; 19F NMR (235.33 MHz, 

CDCl3) δ -62.4 (s, 3F); HRMS (ESI) calcd for C12H14F3NNaO2 [M+H+] 284.0869, found 

284.0887. Spectral data match reported data in literature.38,40 

4-Iodophenyl acetate 

To a solution of 4-iodophenol (5 g, 22.7 mmol) in CH2Cl2 (100 mL) at 0 °C were added 

acetyl chloride (1.94 mL, 27.3 mmol) and Et3N (4.75 mL, 34.1 mmol). The reaction 

mixture was stirred for 40 minutes at 0 °C, followed by 7 hours at room temperature and 

finally washed with water (100 mL). After drying of the organic layer over Na2SO4 and 

filtration, the solution was concentrated in vacuo. The crude product was purified by 

silica gel column chromatography (gradient 100:0 – 96:4 n-hexane:EtOAc) to afford 4-
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iodophenyl acetate (5.10 g, 19.5 mmol, 86% yield) as a white solid. 1H NMR (500.23 MHz, 

CDCl3) δ 7.68 (m, 2H), 6.86 (m, 2H), 2.29 (s, 3H); 13C NMR (125.80 MHz, CDCl3) δ 169.3, 

150.6, 138.6, 123.9, 90.0, 21.3. Spectral data match reported data in literature.41,42 

4-(Trifluoromethyl)phenyl acetate 

To a solution of 4-(trifluoromethyl)phenol (150 mg, 0.93 mmol) in CH2Cl2 (5 mL) at 0 °C 

were added acetyl chloride (79 µL, 1.11 mmol) and Et3N (387 µL, 2.78 mmol). The 

reaction mixture was stirred for 72 hours at 50 °C. After washing with water (5 mL), the 

solution was dried over Na2SO4, filtered, and concentrated in vacuo. The crude product 

was purified by silica gel column chromatography (90:10 n-hexane:EtOAc) to afford 4-

(trifluoromethyl)phenyl acetate (90 mg, 0.44 mmol, 48% yield) as a colorless oil. 1H NMR 

(500.23 MHz, CDCl3) δ 7.65 (d, J = 8.2 Hz, 2H), 7.22 (d, J = 8.2 Hz, 2H), 2.33 (s, 3H); 13C 

NMR (125.80 MHz, CDCl3) δ 169.1, 153.2, 128.2 (q, JC-F = 32.7 Hz), 126.9 (q, JC-F = 3.6 Hz), 

124.0 (q, JC-F = 272.5 Hz), 122.2, 21.3; 19F NMR (235.33 MHz, CDCl3) δ -62.8 (s, 3F). 

Spectral data match reported data in literature.41,43 

Synthesis route towards 3-deoxyestrone-3-boronic acid, 3-deoxy-3-iodo-estrone 

and 3-deoxy-3-(trifluoromethyl)estrone 

 

Scheme 6 Reagents (i) Tf2O, Et3N, CH2Cl2; (ii) Pd(dppf)Cl2-CH2Cl2, HBPin, Et3N, dioxane; (iii) KHF2, H2O, 

MeOH; (iv) TMSCl, H2O, MeCN; (v) Cu(NO3)2.2H2O, I2, MeCN; (vi) CHF3, Cu(I)Br, KOtBu, Et3N.3HF, air, 

DMF. 
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3-(Trifluoromethanesulfonyl)estrone 

To a solution of estrone (2.00 g, 7.40 mmol) in CH2Cl2 (38 mL) were added triethylamine 

(2.06 mL, 14.8 mmol) and trifluoromethanesulfonic anhydride (1.38 mL, 8.14 mmol). 

The reaction mixture was stirred for 50 min at 0 °C, followed by the addition of aqueous 

sat. NaHCO3 (40 mL). The phases were separated and the aqueous phase was extracted 

with CH2Cl2 (2 x 40 mL). The combined organic layers were washed with brine (80 mL) 

and dried over Na2SO4. After filtration and concentration in vacuo, the crude product was 

purified by silica gel column chromatography (gradient 100:0 - 25:75 n-hexane:EtOAc) 

to afford 3-(trifluoro-methanesulfonyl)estrone (2.85 g, 7.08 mmol, 96%) as a white solid. 

1H NMR (250.13 MHz, CDCl3) δ 7.34 (d, J = 8.5 Hz, 1H), 7.07-6.97 (m, 2H), 2.98-2.89 (m, 

2H), 2.60-1.91 (m, 7H), 1.70-1.38 (m, 6H), 0.92 (s, 3H). Spectral data match reported data 

in literature.44  

3-Deoxyestrone-3-boronic acid pinacol ester 

To a mixture of 3-(trifluoromethanesulfonyl)estrone (2.85 g, 7.08 mmol) and 

Pd(dppf)Cl2-CH2Cl2 (0.29 g, 0.35 mmol) in dioxane (35 mL) under argon were added 

triethylamine (5.92 mL, 42.5 mmol) and 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3.18 

mL, 20.5 mmol). The reaction mixture was stirred at 100 °C for 24 hours, followed by 

cooling to room temperature and concentration in vacuo. The residue was purified by 

silica gel column chromatography (gradient 100:0 - 80:20 n-hexane:EtOAc) to afford 3-

deoxyestrone-3-boronic acid pinacol ester (1.85 g, 4.86 mmol, 69%) as a white solid. 1H 

NMR (250.13 MHz, CDCl3) δ 7.63-7.55 (m, 2H), 7.32 (d, J = 7.6 Hz, 1H), 2.98-2.89 (m, 2H), 

2.57-1.92 (m, 7H), 1.70-1.38 (m, 6H), 1.34 (s, 12H), 0.90 (s, 3H). Spectral data match 

reported data in literature.45 

Potassium 3-deoxyestrone-3-trifluoroborate 

To a solution of 3-deoxyestrone-3-boronic acid pinacol ester (1.85 g, 4.86 mmol) in 

methanol (40 mL) was added a solution of potassium hydrogen fluoride (2.12 g, 27.2 

mmol) in water (20 mL). The reaction mixture was stirred at room temperature for 25 

hours, followed by removal of most of the solvent by evaporation. The crude material 

was washed with hot acetone (50 °C, 3 x 50 mL). Drying under vacuum afforded 

potassium 3-deoxyestrone-3-trifluoroborate (1.19 g, 3.30 mmol, 97%) as a white solid, 

which was used without further purification. 1H NMR (500.23 MHz, DMSO) δ 7.06 (d, J = 

7.6 Hz, 1H), 7.01 (s, 1H), 6.99 (d, J = 7.6 Hz, 1H), 2.84-2.71 (m, 2H), 2.43 (dd, J = 18.9, 8.2 

Hz, 1H), 2.38-2.30 (m, 1H), 2.24-2.14 (m, 1H), 2.13-2.02 (m, 1H), 2.00-1.90 (m, 2H), 1.80-

1.71 (m, 1H), 1.62-1.44 (m, 3H), 1.43-1.28 (m, 3H), 0.83 (s, 3H); 13C NMR (125.80 MHz, 

CDCl3) δ 219.9, 135.7, 133.1, 132.2, 128.9, 122.9, 49.8, 47.4, 44.0, 38.1, 35.4, 31.5, 29.2, 

26.5, 25.5, 21.2, 13.6, carbon directly bonded to boron was not observed, however with 



 
Chapter 4 

220 

1H,13C-HMBC NMR its resonance signal was found at 147.3 ppm; 19F NMR (235.33 MHz, 

CDCl3) δ -138.2 (s, 3F).46 

3-Deoxyestrone-3-boronic acid 

To a solution of potassium 3-deoxyestrone-3-trifluoroborate (1.15 g, 3.2 mmol) in 

acetonitrile (30 mL) were added water (173 µL, 9.59 mmol) and trimethylchlorosilane 

(1.23 mL, 9.59 mmol). After stirring for 1 hour at room temperature, the reaction was 

quenched by addition of sat. NaHCO3 (5 mL). The excess water was removed by 

repeatedly drying over Na2SO4 and filtration. After the last filtration, the solution was 

concentrated in vacuo. The residue was purified by silica gel column chromatography 

(75:25 n-hexane:acetone) to afford 3-deoxyestrone-3-boronic acid (677 mg, 2.27 mmol, 

71%) as a white solid. 1H NMR (500.23 MHz, DMSO + D2O) δ 7.50 (d, J = 7.9 Hz, 1H), 7.47 

(s, 1H), 7.22 (d, J = 7.9 Hz, 1H), 2.86-2.79 (m, 2H), 2.48-2.31 (m, 2H), 2.28-2.19 (m, 1H), 

2.11-2.01 (m, 1H), 1.99-1.90 (m, 2H), 1.80-1.71 (m, 1H), 1.61-1.44 (m, 3H), 1.44-1.30 (m, 

3H), 0.81 (s, 3H), B(OH)2 not observed due to H-D exchange; 13C NMR (125.80 MHz, 

CDCl3) δ 220.6, 141.9, 135.3, 135.2, 131.8, 124.6, 50.0, 47.7, 44.3, 37.9, 35.7, 31.6, 29.2, 

26.4, 25.5, 21.5, 13.8, carbon directly bonded to boron was not observed, however with 

1H,13C-HMBC NMR its resonance signal was found at 130.7 ppm; HRMS (ESI) calcd for 

C18H23BNaO3 [M+Na+] 321.1632, found 321.1641. Spectral data match reported data in 

literature.45,46 

3-Deoxy-3-iodoestrone 

To a reaction vial were added Cu(NO3)2.2H2O (32.4 mg, 0.134 mmol), iodine (170 mg, 

0.671 mmol), 3-deoxyestrone-3-boronic acid (200 mg, 0.671 mmol) and acetonitrile (5 

mL). The reaction vessel was stirred for 3 days at room temperature under an argon 

atmosphere. After addition of water (40 mL), the reaction was extracted with CH2Cl2 (3 x 

40 mL). The combined organic layers were washed with 10% aqueous sodium 

hyposulfite (40 mL), distilled water (40 mL), dried over Na2SO4, filtered and 

concentrated in vacuo. The residue was purified by silica gel column chromatography 

(gradient 100:0 - 75:25 n-hexane:EtOAc) to afford 3-deoxy-3-iodoestrone (157 mg, 0.41 

mmol, 62%) as a white solid. 1H NMR (500.23 MHz, CDCl3) δ 7.48-7.43 (m, 2H), 7.02 (d, J 

= 8.2 Hz, 1H), 2.90-2.84 (m, 2H), 2.51 (dd, J = 19.2, 8.8 Hz, 1H), 2.41-2.35 (m, 1H), 2.30-

2.21 (m, 1H), 2.19-2.10 (m, 1H), 2.09-1.92 (m, 3H), 1.69-1.37 (m, 6H), 0.90 (s, 3H); 13C 

NMR (125.80 MHz, CDCl3) δ 220.8, 139.6, 139.3, 137.9, 134.8, 127.6, 91.3, 50.5, 48.1, 

44.3, 38.0, 36.0, 31.6, 29.1, 26.4, 25.7, 21.7, 14.0.47 

3-Deoxy-3-(trifluoromethyl)estrone 

To a reaction vessel were added Cu(I)Br (48 mg, 0.33 mmol) and DMF (4 mL). After 

cooling to -65 °C under argon, 1M KOtBu in DMF (0.67 mL, 0.67 mmol) was added and 



A universal procedure for the [18F]trifluoromethylation of aryl iodides and 
aryl boronic acids with highly improved specific activity 

221 

gaseous trifluoromethane (22.5 mL, 1.00 mmol) was bubbled through the reaction 

mixture. The vessel was warmed to room temperature and stirred for 30 minutes to 

form CuCF3. The formed CuCF3 was stabilised by addition of Et3N.3HF (36 µL, 0.22 

mmol) and stirring for 30 minutes at room temperature. After addition of 3-

deoxyestrone-3-boronic acid (50 mg, 0.168 mmol), the reaction was stirred for another 

2.5 hours, followed by the addition of H2O (30 mL) to quench the reaction. The mixture 

was extracted with Et2O (3 x 10 mL). The combined Et2O layers were washed with H2O 

(3 x 10 mL), dried over Na2SO4, filtered and concentrated in vacuo. The residue was 

purified by silica gel column chromatography (gradient 100:0 - 75:25 n-hexane:EtOAc) 

to afford 3-deoxy-3-(trifluoromethyl)estrone (6 mg, 0.019 mmol, 11%) as a white solid. 

1H NMR (500.23 MHz, CDCl3) δ 7.39 (s, 2H), 7.35 (s, 1H), 3.00-2.93 (m, 2H), 2.52 (dd, J = 

19.1, 8.7 Hz, 1H), 2.48-2.42 (m, 1H), 2.38-2.30 (m, 1H), 2.21-1.96 (m, 4H), 1.70-1.41 (m, 

6H), 0.92 (s, 3H); 13C NMR (125.80 MHz, CDCl3) δ 220.7, 143.8, 137.4, 128.2 (q, JC-F = 31.8 

Hz), 125.92, 125.86 (q, JC-F = 3.6 Hz), 124.5 (q, JC-F = 271.6 Hz), 122.6 (q, JC-F = 3.6 Hz), 

50.6, 48.0, 44.6, 37.9, 36.0, 31.6, 29.4, 26.3, 25.7, 21.7, 13.9; 19F NMR (235.33 MHz, CDCl3) 

δ -62.9 (s, 3F); HRMS (ESI) calcd for C19H21F3NaO3 [M+Na+] 345.1449 found 345.1436. 

Spectral data match data reported in literature.48 

N-(tert-butoxycarbonyl)-4-borono-L-phenylalanine methyl ester 

To a solution of 4-borono-L-phenylalanine (250 mg, 1.20 mmol) in water (16.5 mL) and 

acetone (16.5 mL) were added Na2CO3 (139 mg, 1.32 mmol) and di-tert-butyl 

dicarbonate (287 mg, 1.32 mmol), after which the reaction mixture was stirred at room 

temperature for 24 hours. Next the reaction mixture was acidified with 10% aqueous 

citric acid (10 mL), followed by the removal of acetone by evaporation. The aqueous 

solution was extracted with EtOAc (3 x 65 mL), the combined extracts were washed with 

10% citric acid (3 x 50 mL) and brine (3 x 50 mL). The organic layer was dried over 

Na2SO4, filtered and concentrated in vacuo to afford N-(tert-butoxycarbonyl)-4-borono-

L-phenyalanine (265 mg, 72%) as a white solid which was used without further 

purification. To a solution of N-(tert-butoxycarbonyl)-4-borono-L-phenylalanine (260 

mg, 0.84 mmol) in DMF (2.5 mL) were added KHCO3 (168 mg, 1.68 mmol) and methyl 

iodide (105 µL, 1.68 mmol) and the mixture was stirred at room temperature for 7 days. 

The reaction mixture was concentrated in vacuo and the residue was suspended in EtOAc 

(12 mL). The mixture was washed with 10% citric acid (3 x 5 mL), saturated NaHCO3 (3 x 

5 mL) and brine (3 x 5 mL) and dried over Na2SO4, filtered and concentrated in vacuo. 

The residue was purified by silica gel column chromatography (gradient 100:0 - 95:5 

CH2Cl2:MeOH) to afford N-(tert-butoxycarbonyl)-4-borono-L-phenylalanine methyl ester 

(191 mg, 0.59 mmol, 70%) as a white solid. 1H NMR (500.23 MHz, DMSO + D2O) δ 7.67 

(d, J = 7.6 Hz, 2H), 7.17 (d, J = 7.6 Hz, 2H), 4.15 (dd, J = 9.8, 5.0 Hz, 1H), 3.59 (s, 3H), 2.98 
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(dd, J = 13.7, 5.0 Hz, 1H), 2.87-2.76 (m, 1H), 1.30 (s, 9H), B(OH)2 and NH not observed 

due to H-D exchange, contains 16% of a Boc rotamer (Boc rotamer singlet at 1.23 ppm); 

13C NMR (125.80 MHz, CDCl3) δ 173.0, 155.8, 139.9, 134.4, 128.5, 78.8, 55.3, 52.2, 36.7, 

28.4, carbon directly bonded to boron was not observed, however with 1H,13C-HMBC 

NMR its resonance signal was found at 132.0 ppm; HRMS (ESI) calcd for C15H22BNNaO6 

[M+Na+] 346.1432, found 346.1436. Spectral data match data reported in literature.49.50 

N-(tert-butoxycarbonyl)-4-iodo-L-phenylalanine methyl ester 

Thionyl chloride (1.00 mL, 13.7 mmol) and 4-iodo-L-phenylalanine (800 mg, 2.75 mmol) 

were added to methanol (10 mL) at 0 °C. After removal of the ice bath, the reaction 

mixture was refluxed for 2 hours, followed by rotary evaporation to dryness. The residue 

was washed with Et2O on a sintered glass filter, to afford 4-iodo-L-phenylalanine methyl 

ester as a white solid which was used without further purification. To a solution of the 4-

iodo-L-phenylalanine methyl ester in CH2Cl2 (4 mL) were added N-methylmorpholine 

(906 µL, 8.25 mmol) and di-tert-butyl dicarbonate (779 mg, 3.57 mmol). The reaction 

mixture was stirred for 16 hours under an argon atmosphere at room temperature, 

followed by evaporation of the solvent in vacuo. The residue was dissolved in EtOAc (100 

mL) and washed with sat. NaHCO3 (50 mL), 50 mM citric acid (50 mL), water (50 mL), 

brine (50 mL). After drying over Na2SO4, the organic layer was filtered and concentrated 

in vacuo. The residue was purified by silica gel column chromatography (90:10 n-

hexane:EtOAc) to afford N-(tert-butoxycarbonyl)-4-iodo-L-phenylalanine methyl ester 

(712 mg, 1.76 mmol, 64%) as a white solid. 1H NMR (500.23 MHz, CDCl3) δ 7.61 (d, J = 7.9 

Hz, 2H), 6.87 (d, J = 7.9 Hz, 2H), 4.97 (d, J = 7.3 Hz, 1H), 4.61-4.53 (m, 1H), 3.71 (s, 3H), 

3.07 (dd, J = 13.9, 5.4 Hz, 1H), 2.98 (dd, J = 13.9, 5.4 Hz, 1H), 1.42 (s, 9H); 13C NMR 

(125.80 MHz, CDCl3) δ 172.2, 155.1, 137.7, 135.8, 131.5, 92.7, 80.2, 54.3, 52.5, 38.0, 28.4; 

HRMS (ESI) calcd for C15H20INNaO4 [M+Na+] 428.0329, found 428.0333. Spectral data 

match reported data in literature.51 

N-(tert-butoxycarbonyl)-4-(trifluoromethyl)-L-phenylalanine methyl ester 

Thionyl chloride (175 µL, 2.14 mmol) and 4-(trifluoromethyl)-L-phenylalanine (100 mg, 

0.43 mmol) were added to methanol (1.2 mL) at 0 °C. After removal of the ice bath, the 

reaction mixture was refluxed for 2 hours, followed by rotary evaporation to dryness. 

The residue was washed with Et2O on a sintered glass filter, to afford 4-

(trifluoromethyl)-L-phenylalanine methyl ester as a white solid which was used without 

further purification. To a solution of the 4-(trifluoromethyl)-L-phenylalanine methyl 

ester in CH2Cl2 (4 mL) were added N-methylmorpholine (141 µL, 1.29 mmol) and di-tert-

butyl dicarbonate (122 mg, 0.56 mmol). The reaction mixture was stirred for 16 hours 

under inert atmosphere at room temperature, followed by evaporation of the solvent in 
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vacuo. The residue was dissolved in EtOAc (100 mL) and washed with sat. NaHCO3 (50 

mL), 50 mM citric acid (50 mL), water (50 mL), brine (50 mL). After drying over Na2SO4, 

the organic layer was filtered and concentrated in vacuo. The residue was purified by 

silica gel column chromatography (90:10 n-hexane:EtOAc) to afford N-(tert-

butoxycarbonyl)-4-(trifluoromethyl)-L-phenylalanine methyl ester (90 mg, 0.26 mmol, 

60%) as a white solid. 1H NMR (500.23 MHz, CDCl3) δ 7.48 (d, J = 7.6 Hz, 2H), 7.22-7.16 

(m, 2H), 4.94 (d, J = 7.3 Hz, 1H), 4.60-4.52 (m, 1H), 3.66 (s, 3H), 3.14 (dd, J = 13.5, 5.4 Hz, 

1H), 3.01 (dd, J = 13.5, 6.1 Hz, 1H), 1.34 (s, 9H); (13C NMR, 125.80 MHz, CDCl3): δ = 172.1, 

155.1, 140.4, 129.8, 129.4 (q, JC-F = 32.7 Hz), 125.5 (q, JC-F = 3.6 Hz), 124.3 (q, JC-F = 271.6 

Hz), 80.3, 54.3, 52.6, 38.4, 28.4; 19F NMR (235.33 MHz, CDCl3) δ -63.0 (s, 3F); HRMS (ESI) 

calcd for C16H20F3NNaO4 [M+Na+] 370.1236, found 370.1244. Spectral data match 

reported data in literature.51,52 
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5.1 Summary 

Positron Emission Tomography (PET) is a molecular imaging technique, which can 

visualise the distribution of biologically active compounds labelled with a positron 

emitting radionuclide, so called PET tracers. In the clinic, PET is used for the diagnosis of 

disease and monitoring of treatment by visualizing biological targets and processes 

involved with the disease. Besides being a clinical imaging tool, PET imaging is also of 

interest for drug development, since it can be used to investigate the interaction of a 

novel drug candidate with a biological target using a PET tracer, or by visualising the 

distribution and pharmacokinetics of the novel drug candidate by labelling the drug 

itself. 

Of the available positron emitting radionuclides, fluorine-18 is most frequently 

used, because (i) PET tracers with this nuclide can be transported to other satellite PET 

scan facilities due to its 110 minute half-life, and (ii) high resolution PET images can be 

obtained due to its clean decay profile and low positron energy. 

Two strategies can be identified to synthesise fluorine-18 labelled PET tracers: (1) 

late-stage radiofluorination, in which fluorine-18 is introduced in the last step of the PET 

tracer synthesis and (2) the building block approach, in which first a fluorine-18 labelled 

building block is synthesised in a fast and efficient manner, which is subsequently 

further transformed to the actual PET tracer. 

The building block approach is the main focus of this thesis, as it describes both a 

comprehensive overview of 18F-labelled building blocks applied since 2010 is given , as 

well as novel 18F-labelling strategies towards 18F-trifluoromethylations using [18F]tri-

fluoromethane as a building block. 

In Chapter 1¸ an introduction is provided about the basic principles of Positron 

Emission Tomography and the general approaches towards the synthesis of fluorine-18 

labelled PET tracers as well as a short introduction on the synthesis of PET tracers 

containing the fluorine-18 labelled trifluoromethyl moiety. 

In Chapter 2, a comprehensive overview is presented that discusses the synthesis 

and application of fluorine-18 labelled building blocks in the synthesis of PET tracers in 

the period of 2010 - 2016. The syntheses of the building blocks as well as the chemical 

reactions that can be performed with these building blocks to arrive at the final PET 

tracers are discussed. Details are given on reaction conditions, purification methods, 

radiochemical yields, radiochemical purities and specific activities of the building blocks 

and the PET tracers made with these building blocks.  
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It is shown that some fluorine-18 labelled building blocks are frequently used, 

including: 

• The alkylating building blocks [18F]fluoroethyl bromide and [18F]FETos and the 

“click”-reaction building block [18F]fluoroethyl azide, due to their simple, easy to 

automate synthesis and efficient follow-up reaction with precursors. 

• 4-[18F]Fluorobenzaldehyde, due to its versatility. The compound has been applied in 

at least five different types of coupling reactions as well as in various 

multicomponent reactions. 

• N-succinimidyl-4-[18F]fluorobenzoate, due to its selectivity, as it almost exclusively 

reacts with primary amines.  

Other building blocks are less widely applied, however still find use in the synthesis 

of PET tracers which cannot be synthesised easily via late-stage radiofluorination 

chemistry or for the fast and easy access to a series of PET tracers with the aim to select 

the PET tracer with the optimal biological characteristics.  

In the discussion, it becomes clear that the current toolkit of fluorine-18 labelled 

building blocks still has various shortcomings, including the poor availability of good 

methods to synthesise PET tracers which contain a fluorine-18 labelled trifluoromethyl 

(CF3) functional group. Novel methods to produce these PET tracers are desired, as many 

biologically active compounds contain a trifluoromethyl (CF3) functional group, because 

it potentially improves their binding selectivity, lipophilicity and metabolic stability. 

There were limited methods available for the synthesis of PET tracers with the fluorine-

18 labelled CF3 functional group at the start of the work described in this thesis (2010). 

These all show one or more shortcomings including:  

• Low radiochemical yields in the synthesis of structural complex PET tracers due to 

harsh reaction conditions. 

• Challenging precursor synthesis and/or availability. 

• Low specific activities of the synthesised PET tracers. 

• Moderate applicability as only specific structures can be synthesised (e.g. synthesis 

of the 1,1,1-[18F]trifluoroethyl group by 18F-fluorination of 1,1-difluorovinyl 

precursors).  

All in all, there is a demand for a universal method to synthesise PET tracers with 

the fluorine-18 labelled CF3 functional group with good radiochemical yields and high 

specific activities, using bench-stable precursors and simple radiochemistry method-

ology. Therefore, the aim of the research, described in the following chapters, is to 
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develop such a universal method towards PET tracers with the fluorine-18 labelled CF3 

functional group using [18F]trifluoromethane ([18F]HCF3) as a building block.  

In Chapter 3, the synthesis of [18F]HCF3 is described. It is shown that [18F]HCF3 can 

be synthesised by mild nucleophilic substitution of difluoroiodomethane (HCF2I) with 

[18F]fluoride. Because [18F]HCF3 is volatile (boiling point = -82 °C), it could be simply 

purified by distilling it out of the reaction mixture using a flow of Helium, followed by 

trapping the [18F]HCF3 in a second reaction vessel in a solvent of choice at -60 °C. Using 

this method, pure [18F]HCF3 could be obtained in a good radiochemical yield of 60 ± 15% 

(decay corrected). 

The electron withdrawing nature of fluorine atoms results in a rather acidic 

hydrogen atom in [18F]HCF3 that can be deprotonated by strong bases such as potassium 

tert-butoxide (KOtBu). The formed trifluoromethyl anion [18F]CF3- is a good nucleophile 

that readily reacts with various ketones and aldehydes towards [18F]trifluoro-

methylcarbinols (Scheme 1). Especially in DMF, excellent radiochemical yields were 

obtained.  

 

 

Scheme 1 Application of [18F]HCF3 in the synthesis of [18F]trifluoromethylcarbinols and 

[18F]trifluoromethyl arenes. 
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Furthermore, we showed that without DMF, the [18F]CF3- anion rapidly dis-

integrated to difluorocarbene and fluoride. In the presence of DMF, this anion reacts with 

DMF to form a gem-aminoalcoholate. This gem-aminoalcoholate is stable and reacts in a 

concerted fashion with aldehydes and ketones to form [18F]trifluoromethylcarbinols. 

These results show that [18F]HCF3 is indeed a useful building block for the synthesis 

of compounds bearing the [18F]CF3 group. In this particular case, the application is 

however limited to the synthesis of [18F]trifluoromethylcarbinols.  

In Chapter 4, we aimed at the development of a novel method towards the 

synthesis of PET tracers containing an 18F-labelled aryl-CF3 group, because the aryl-CF3 

group has found widespread application in biologically active compounds. First, we 

focussed on the [18F]trifluoromethylation of aryl iodides by in situ formation of 

[18F]CuCF3 using KOtBu as a strong base, Cu(I)Cl as a copper(I) source and Et3N.HF to 

stabilise the [18F]CuCF3 by precipitation of K+ ions as KF(s).  

High yields were obtained within 10 minutes at 130 ˚C. Using this method various 

[18F]trifluoromethyl arenes were successfully synthesised including [18F]trifluoromethyl 

derivatives of estrone and phenyl alanine (Scheme 1). 

To further extend the application of [18F]HCF3, the oxidative [18F]trifluoro-

methylation of boronic acids was investigated. [18F]Trifluoromethyl arenes could be 

synthesised from their corresponding boronic acid precursors by reaction with 

[18F]CuCF3 at room temperature and after 1 minute reaction time (Scheme 1). The 

[18F]CuCF3 reaction mixture had to be purged with air in the presence of the boronic acid 

precursor in order to obtain the [18F]trifluoromethyl arenes in decent yields and short 

reaction times. In comparison to the [18F]trifluoromethylation of iodoarenes, this 

reaction gives the [18F]trifluoromethyl arenes in higher radiochemical yields (deter-

mined analytically), at lower temperatures (20 °C vs 130 °C) and in shorter reaction 

times (1 minute vs 10 minutes). 

When [18F]HCF3 was made via the procedure described in Chapter 3, the specific 

activity of the final [18F]trifluoromethylated products was ~1 GBq/µmol. However, for a 

PET tracer to be useful for imaging low abundance targets, in general a specific activity of 

at least 18 GBq/µmol is required. Efforts to increase the specific activity were successful. 

By decreasing the amount of difluoroiodomethane (HCF2I) and base in the synthesis of 

[18F]HCF3, the specific activity of this building block, and thus of the PET tracers made by 

this building block, could be increased to 28 ± 5 GBq/µmol.  

Overall, it was shown that [18F]HCF3 is a useful building block for the synthesis of 

PET tracers with the fluorine-18 labelled trifluoromethyl functional group.  
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5.2 Outlook 

This work shows that [18F]HCF3 is a useful addition to the radiochemist’s toolkit as this 

building block can be made in good yields using a relatively simple procedure and has 

already shown application in the synthesis of [18F]trifluoromethylcarbinols (Chapter 3) 

and [18F]trifluoromethyl arenes (Chapter 4). Furthermore, this is still the only available 

method which gives these compounds in good specific activities of >18 GBq/µmol. 

Therefore, it seems likely that [18F]HCF3 will be highly appreciated by other radio-

chemists as a novel fluorine-18 labelled building block. Consequently, we foresee the use 

of this building block in the synthesis of various PET tracers in the future. 

Although we have demonstrated here a first proof of the applicability of [18F]HCF3, 

various improvements are still needed to show its overall potential. Concerning the 

synthesis of [18F]HCF3 itself, improvements that increase the radiochemical yield and the 

specific activity seem vital. One way in which this may be achieved is by the use of 

alternative methods to introduce fluorine-18. Especially novel “dry” radiofluorination 

methodology might be interesting to explore for the synthesis of [18F]HCF3. Such an 

approach should allow the use of lower amounts of HCF2I precursor, which should lead 

to higher specific activities in combination with higher radiochemical yields. Because 

HCF2I is very volatile and can therefore be challenging to handle, other difluoromethane 

HCF2X precursors in which X represents a larger leaving group than iodine may be 

worthwhile to study in more detail. Such building blocks are better handled and should 

also lead to higher radiochemical yields and better specific activity. One recent example 

of such a new HCF2X precursor is the (difluoromethyl)(mesityl)(phenyl) sulfonium salt 

depicted in Scheme 2. This material is reported as a novel precursor for the synthesis of 

[18F]HCF3 by the group of Phillipe Jubault and Xavier Pannecoucke.1,2 This precursor is a 

bench stable, crystalline compound, and is therefore easier to handle. The radiochemical 

yield (29%) as well the specific activity (<1 GBq/µmol) were however still low. 

 

Scheme 2 (difluoromethyl)(mesity)(phenyl) sulfonium salt 1. 

In our work, we reported on the reaction of [18F]HCF3 with aldehydes and ketones 

via in situ formed [18F]CF3- as a nucleophile and on the reaction of [18F]HCF3 with aryl 

iodides and aryl boronic acids via in situ formed [18F]CuCF3. Both intermediates, [18F]CF3- 
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and [18F]CuCF3, have potential to be used in other types of reactions. A recent example, 

reported by Carbonnel et al. shows the reaction of [18F]HCF3 via in situ formed [18F]CF3- 

with disulfides and diselenides towards [18F]R-SCF3 derivatives (Scheme 3), providing 

these products in excellent radiochemical yields.2  

  

Scheme 3 Reaction of [18F]HCF3 with disulfides and diselenides. 

Other types of reactions which could be of interest, using the in situ formed [18F]CF3- 

anion as a nucleophile, include the reaction with esters and imines leading to 

[18F]trifluoromethyl ketones and [18F]α-trifluoromethyl amines. 

Also in situ formed [18F]CuCF3 may be used for other types of cross-coupling 

chemistry such as the trifluoromethylation of terminal alkenes, benzyl halides and vinyl 

halides. Futhermore, beside [18F]CuCF3, other metal complexes containing the 18F-

labelled -CF3 moiety, either with or without ligands, could be potentially useful 

intermediates for trifluoromethylation reactions in the future. 

Besides the building block approach using [18F]HCF3, in which the building block is 

first synthesised by reaction of [18F]fluoride with difluoroiodomethane, followed by 

isolation of the building block and subsequent trifluoromethylation towards the desired 

[18F]CF3-containing PET tracer, many effort has lately been put in the development of 

chemistry in which the [18F]CF3-containing PET tracer is made directly in one step. There 

are two ways in which this is performed: (1) [18F]HCF3, [18F]CF3-, [18F]CuCF3 or other 18F-

labelled CF3 intermediates are formed in situ from [18F]fluoride, after which the 

intermediate reacts directly (without purification) with a precursor towards the desired 

PET tracer of interest;3-6 (2) [18F]fluoride is reacted directly with a precursor containing 

a -CF2Br, -CF2Cl, -CF2H precursor moiety.7-10 In both cases, the specific acitivity of the 

[18F]CF3-containing products was rather low: <10 GBq/µmol. This is caused by the 

presence of large amounts of non-radioactive 19F in these reactions, originating from the 

precursor. In the method from this work, 19F is also present in the HCF2I precursor, 

however, after distillation of the formed [18F]HCF3, it is collected in a new reaction vessel, 

which does not contain any HCF2I, which can lead to isotopic dilution. Isotopic dilution 

can only occur during the synthesis of [18F]HCF3 in the first reacton vessel, however, 

because the synthesis of [18F]HCF3 occurs very efficently, the amount of 19F containing 
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HCF2I precursor could be already reduced to 1 µmol and may be even further reduced in 

the future to deliver [18F]HCF3 in specific activites higher than 28 ± 5 GBq/µmol. 

Very recently, M. Haskali et al. published a method which delivers PET tracers with 

the radioactive -CF3 moiety in very high specific activites of 242 - 551 GBq/µmol by 

employing carbon-11 labelled [11C]HCF3.11 They showed that [11C]HCF3 can be 

synthesised efficiently and in high specific activities by gas phase fluorination of [11C]CH4 

using a high temperature CoCF3 column. As [11C]HCF3 is chemically identical to [18F]HCF3, 

it can be used for exactly the same chemical reactions, giving the products in similar 

yields and this time also in high specific activities. Of course, although high specific 

activity PET tracers can be obtained via this methods, the application is limited due to 

the short half-life of carbon-11 (20 minutes). Therefore, high specific activity fluorine-18 

labelled [18F]HCF3 is still a very valuable building block besides [11C]HCF3. 

Interestingly, a similar approach was employed for the synthesis of [18F]HCF3.12 

First [18F]H3CF was made by reaction of [18F]fluoride with MeOMs. Subsequently, the 

[18F] H3CF was reacted to [18F]HCF3 using the same high temperature CoCF3 column. 

Unfortantely, oposed to the [11C]HCF3 synthesis, the specific activity of products made 

using [18F]HCF3 was measured to be only 14 GBq/µmol.  

In conclusion, we have shown that [18F]HCF3 is a valuable building block with high 

potential to be commonly used in the future, mainly due to its versatility and its high 

specific activity which is expected to be even further improved. It is however of 

importance that its capability is shown soon by using this building block in the synthesis 

of structurally complex PET tracers, including purification, formulation and application 

of the PET tracers in preclinical and clinical imaging studies.  
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weer vooruitgekomen, met dit proefschrift als eindresultaat. 
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confronterend, heeft jouw begeleiding ervoor gezorgd dat iedereen binnen dit project 
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altijd op een lijn zat en dat duidelijk was wat, hoe en wanneer de zaken moesten 
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krijgen. Graag wil ik jullie bedanken voor de kennis, tips en hulp die jullie mij gegeven 
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een PhD binnen het bereik.  

Lieve Diederik, toen wij elkaar hebben leren kennen was ik net begonnen met mijn 

promotieonderzoek. Je hebt dus alle hoogte- en dieptepunten van de afgelopen jaren 

meegemaakt. Ook als het soms toch wat te veel werd heb jij mij altijd onvoorwaardelijk 
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